A332776
a(n) = 1 + Sum_{k=1..n-1} binomial(n-1,k) * a(k) * a(n-k-1).
Original entry on oeis.org
1, 1, 2, 5, 18, 83, 464, 3041, 22810, 192595, 1807328, 18658097, 210138882, 2563990859, 33691089824, 474327797585, 7123141539610, 113656386574099, 1920170741071280, 34242622099969217, 642792206343361602, 12669617513914228907, 261613287097165614224, 5647565141926833774977
Offset: 0
-
a[n_] := a[n] = 1 + Sum[Binomial[n - 1, k] a[k] a[n - k - 1], {k, 1, n - 1}]; Table[a[n], {n, 0, 23}]
terms = 23; A[] = 0; Do[A[x] = Normal[Integrate[Exp[x] + A[x] (A[x] - 1), x] + O[x]^(terms + 1)], terms]; CoefficientList[A[x], x] Range[0, terms]!
A282179
E.g.f.: exp(exp(x) - 1)*(exp(3*x) - 2*exp(x) + 1).
Original entry on oeis.org
0, 1, 9, 52, 283, 1561, 8930, 53411, 334785, 2199034, 15119621, 108644581, 814474176, 6358910949, 51615342685, 434865155292, 3796991928727, 34308796490005, 320379418256794, 3087939032182127, 30683582797977749, 313977721545709002, 3305220440084030809, 35759627532783842561
Offset: 0
E.g.f.: A(x) = x/1! + 9*x^2/2! + 52*x^3/3! + 283*x^4/4! + 1561*x^5/5! + 8930*x^6/6! + ...
- Alois P. Heinz, Table of n, a(n) for n = 0..572
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- Eric Weisstein's MathWorld, Stirling Transform
-
b:= proc(n, m) option remember; `if`(n=0,
m^3, m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..27); # Alois P. Heinz, Jul 15 2022
-
Range[0, 23]! CoefficientList[Series[Exp[Exp[x] - 1] (Exp[3 x] - 2 Exp[x] + 1), {x, 0, 23}], x]
Table[Sum[StirlingS2[n, k] k^3, {k, 0, n}], {n, 0, 23}]
Table[Sum[Binomial[n, k] BellB[n-k] (3^k - 2), {k, 1, n}], {n, 0, 23}]
Table[BellB[n+3] - 3*BellB[n+2] + BellB[n], {n, 0, 23}] (* Vaclav Kotesovec, Aug 06 2021 *)
A337186
a(n) = 1 + Sum_{k=0..n-2} binomial(n-2,k) * a(k).
Original entry on oeis.org
1, 1, 2, 3, 6, 14, 36, 101, 308, 1013, 3562, 13300, 52482, 218045, 950614, 4335563, 20628882, 102153978, 525383324, 2801105889, 15455435864, 88117352141, 518391612686, 3142762585120, 19611454375090, 125829007917417, 829254498014570, 5608225148263459
Offset: 0
-
a[n_] := a[n] = 1 + Sum[Binomial[n - 2, k] a[k], {k, 0, n - 2}]; Table[a[n], {n, 0, 27}]
A346771
G.f. A(x) satisfies: A(x) = 1 + x * A(x/(1 - x)) / (1 - x^2).
Original entry on oeis.org
1, 1, 1, 3, 7, 23, 81, 325, 1429, 6851, 35443, 196507, 1160633, 7266561, 48022313, 333776331, 2432140759, 18528143535, 147201596073, 1216952016245, 10448532393869, 92999784076875, 856739848236627, 8156691628658019, 80147320081510673, 811770418508099905
Offset: 0
-
nmax = 25; A[] = 0; Do[A[x] = 1 + x A[x/(1 - x)]/(1 - x^2) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 25; CoefficientList[Series[Exp[-x] (2 Exp[Exp[x] - 1] - 1), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k] a[n - k - 1], {k, 1, n - 1}]; Table[a[n], {n, 0, 25}]
A352861
a(n) = 1 + Sum_{k=0..n-1} binomial(n+2,k+3) * a(k).
Original entry on oeis.org
1, 2, 7, 28, 121, 570, 2911, 15968, 93433, 580162, 3806275, 26284368, 190415809, 1442982350, 11409436363, 93913277608, 803094241309, 7121757279798, 65383520552131, 620517308328812, 6079168380979213, 61402851498255790, 638674759049919079, 6833589979500278700
Offset: 0
-
a[n_] := a[n] = 1 + Sum[Binomial[n + 2, k + 3] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 23}]
nmax = 23; A[] = 0; Do[A[x] = 1/(1 - x) + x A[x/(1 - x)]/(1 - x)^4 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
A352862
a(n) = 1 + Sum_{k=0..n-1} binomial(n+3,k+4) * a(k).
Original entry on oeis.org
1, 2, 8, 36, 170, 865, 4742, 27757, 172375, 1130865, 7809057, 56572404, 428710587, 3389749264, 27901667938, 238599540142, 2115876327408, 19425465343555, 184355895494512, 1806122902809371, 18242807108024625, 189750478368293523, 2030261803964224359, 22323607721661782198
Offset: 0
-
a[n_] := a[n] = 1 + Sum[Binomial[n + 3, k + 4] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 23}]
nmax = 23; A[] = 0; Do[A[x] = 1/(1 - x) + x A[x/(1 - x)]/(1 - x)^5 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
A257563
Triangle read by rows, coefficients T(n,k) of polynomials related to the Bell polynomials, for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 2, 0, 1, 3, 0, 1, 5, 4, 0, 1, 10, 14, 5, 0, 1, 19, 48, 30, 6, 0, 1, 36, 149, 158, 55, 7, 0, 1, 69, 445, 727, 413, 91, 8, 0, 1, 134, 1308, 3126, 2638, 924, 140, 9, 0, 1, 263, 3822, 12932, 15396, 7818, 1848, 204, 10, 0, 1, 520, 11159, 52278, 84920, 59382, 19998, 3396, 285, 11
Offset: 0
The triangle starts:
[1]
[0, 2]
[0, 1, 3]
[0, 1, 5, 4]
[0, 1, 10, 14, 5]
[0, 1, 19, 48, 30, 6]
[0, 1, 36, 149, 158, 55, 7]
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 135.
-
T_row := proc(n) local T; T := proc(n,k) option remember; if k = 0 then x^n else add(binomial(n-1,j-1)*T(n-j,k-1)*x, j=0..n-k+1) fi end; PolynomialTools:-CoefficientList(add(T(n,k),k=0..n), x) end: seq(print(T_row(n)), n=0..6);
-
T[n_, k_] := T[n, k] = If[k==0, x^n, Sum[Binomial[n-1, j-1]*T[n-j, k-1]*x, {j, 0, n-k+1}]]; row[n_] := CoefficientList[Sum[T[n, k], {k, 0, n}], x]; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 20 2016, adapted from Maple *)
-
def partial_bell_polynomial(n,k):
X = var(['x_'+str(i) for i in (0..n+1)])
@cached_function
def T(n,k):
if k==0: return X[0]^n
return sum(binomial(n-1,j-1)*X[j]*T(n-j,k-1) for j in (0..n-k+1))
return T(n,k).expand()
def univariate_bell_polynomial(n): # for comparison only
p = sum(partial_bell_polynomial(n,k) for k in (0..n)).subs(x_0=0)
q = p({p.variables()[i]:x for i in range(len(p.variables()))})
R = PolynomialRing(QQ,'x')
return R(q)
def x0_based_univariate_bell_polynomial(n):
p = sum(partial_bell_polynomial(n,k) for k in (0..n))
q = p({p.variables()[i]:x for i in range(len(p.variables()))})
R = PolynomialRing(QQ,'x')
return R(q)
for n in (0..6): x0_based_univariate_bell_polynomial(n).list()
A333305
Irregular array read by rows, a refinement of A256894.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 3, 3, 1, 4, 3, 5, 1, 6, 1, 1, 1, 1, 4, 6, 4, 1, 5, 10, 9, 8, 7, 1, 10, 15, 9, 1, 10, 1, 1, 1, 1, 5, 10, 10, 5, 1, 6, 15, 14, 10, 35, 16, 15, 9, 1, 15, 60, 19, 15, 33, 12, 1, 20, 45, 14, 1, 15, 1, 1
Offset: 0
Irregular table (the refinement is indicated by round brackets) starts:
[0] [1]
[1] [1, 1]
[2] [1, (1, 1), 1]
[3] [1, (1, 2, 1), (3, 1), 1]
[4] [1, (1, 3, 3, 1), (4, 3, 5, 1), (6, 1), 1]
[5] [1, (1, 4, 6, 4, 1), (5, 10, 9, 8, 7, 1), (10, 15, 9, 1), (10, 1), 1]
[6] [1, (1, 5, 10, 10, 5, 1), (6, 15, 14, 10, 35, 16, 15, 9, 1), (15, 60, 19, 15,
33, 12, 1), (20, 45, 14, 1), (15, 1), 1]
-
def BellBlocks(n):
R = InfinitePolynomialRing(ZZ, 'v') # Thanks to F. Chapoton.
V = R.gen()
@cached_function
def T(n, k):
if k == 0: return V[0]^n
return sum(binomial(n-1, j-1)*V[j]*T(n-j, k-1) for j in (0..n-k+1))
P = (T(n, k) for k in (0..n))
return flatten([p.coefficients() for p in P])
for n in (0..8): print(BellBlocks(n))
Comments