cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A335309 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+k,k) * n^(n-k).

Original entry on oeis.org

1, 3, 22, 245, 3606, 65527, 1411404, 35066313, 985483270, 30869546411, 1065442493556, 40144438269949, 1638733865336764, 72012798200637855, 3388250516614331416, 169894851136173584145, 9041936334960057699654, 508945841697238471315027, 30202327515992972576218980
Offset: 0

Views

Author

Ilya Gutkovskiy, May 31 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[n, k] Binomial[n + k, k] n^(n - k), {k, 0, n}], {n, 1, 18}]]
    Table[SeriesCoefficient[1/Sqrt[1 - 2 (n + 2) x + n^2 x^2], {x, 0, n}], {n, 0, 18}]
    Table[n! SeriesCoefficient[Exp[(n + 2) x] BesselI[0, 2 Sqrt[n + 1] x], {x, 0, n}], {n, 0, 18}]
    Table[Hypergeometric2F1[-n, -n, 1, 1 + n], {n, 0, 18}]
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)^2*(n+1)^k); \\ Michel Marcus, Jun 01 2020

Formula

a(n) = central coefficient of (1 + (n + 2)*x + (n + 1)*x^2)^n.
a(n) = [x^n] 1 / sqrt(1 - 2*(n + 2)*x + n^2*x^2).
a(n) = n! * [x^n] exp((n + 2)*x) * BesselI(0,2*sqrt(n + 1)*x).
a(n) = Sum_{k=0..n} binomial(n,k)^2 * (n+1)^k.
a(n) ~ exp(2*sqrt(n)) * n^(n - 1/4) / (2*sqrt(Pi)) * (1 + 11/(12*sqrt(n))). - Vaclav Kotesovec, Jan 09 2023

A367256 a(n) = Sum_{k=0..n} binomial(n, k) * binomial(n - 1, k - 1) * n^(n - k).

Original entry on oeis.org

1, 1, 5, 46, 593, 9726, 192637, 4457580, 117769409, 3492894070, 114790042901, 4137157889316, 162154385331985, 6863637142316332, 311905306734621069, 15140756439172826776, 781693659313991730945, 42759819036520142319270, 2469943332976774829606821
Offset: 0

Views

Author

Peter Luschny, Nov 11 2023

Keywords

Crossrefs

Programs

  • Maple
    a := n -> if n= 0 then 1 else n*n^(n - 1)*hypergeom([1 - n, 1 - n], [2], 1/n) fi:
    seq(simplify(a(n)), n = 0..19);
  • Mathematica
    A367256[n_] := If[n == 0, 1, n*n^(n-1)*Hypergeometric2F1[1-n, 1-n, 2, 1/n]];
    Array[A367256, 25, 0] (* Paolo Xausa, Jan 31 2024 *)

Formula

a(n) = Sum_{k=0..n} A367267(n, k) * n^(n - k).
a(n) = n*n^(n - 1)*hypergeom([1 - n, 1 - n], [2], 1/n) for n > 0.
a(n) ~ exp(2*sqrt(n) - 1) * n^(n - 3/4) / (2*sqrt(Pi)). - Vaclav Kotesovec, Nov 11 2023

A188387 Central coefficient in (1 + (2^n+1)*x + 2^n*x^2)^n for n>=0.

Original entry on oeis.org

1, 3, 33, 1161, 140545, 63148833, 111254837505, 793938286762113, 23282575640347295745, 2812444483776375381074433, 1393909730376211388561041231873
Offset: 0

Views

Author

Paul D. Hanna, Mar 29 2011

Keywords

Crossrefs

Cf. A187021.

Programs

  • Magma
    /*1*/ P:=PolynomialRing(Integers()); [ Coefficients((1+(2^n+1)*x+2^n*x^2)^n)[n+1]: n in [0..10] ]; /*2*/ &cat[ [&+[ Binomial(n, k)^2*2^(n*k): k in [0..n]]]: n in [0..10] ]; // Bruno Berselli, Mar 30 2011
  • Mathematica
    Table[Sum[Binomial[n,k]^2 * 2^(n*k), {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Feb 11 2015 *)
  • PARI
    {a(n)=polcoeff((1+(2^n+1)*x+2^n*x^2+x*O(x^n))^n,n)}
    
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)^2*2^(n*k))}
    

Formula

a(n) = Sum_{k=0..n} C(n,k)^2 * 2^(n*k).
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Feb 12 2015

A383132 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n*k,k) * n^k.

Original entry on oeis.org

1, 2, 33, 2701, 524993, 181752001, 97735073905, 75179269556672, 78240951854025217, 105806762566689176353, 180297512864534759056001, 377878889913778527874694227, 955217573424445946022789385537, 2865620569274978738097814056365899, 10064763360358683666070320479027168465
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Unprotect[Power]; 0^0 = 1; Table[Sum[Binomial[n, k] Binomial[n k, k] n^k, {k, 0, n}], {n, 0, 14}]

Formula

a(n) = [x^n] ((1 + n*x)^n + x)^n.
a(n) ~ exp(n - 1/2) * n^(2*n - 1/2) / sqrt(2*Pi). - Vaclav Kotesovec, Apr 19 2025
Previous Showing 11-14 of 14 results.