A307883 Square array read by descending antidiagonals: T(n, k) where column k is the expansion of 1/sqrt(1 - 2*(k+1)*x + ((k-1)*x)^2).
1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 13, 20, 1, 1, 5, 22, 63, 70, 1, 1, 6, 33, 136, 321, 252, 1, 1, 7, 46, 245, 886, 1683, 924, 1, 1, 8, 61, 396, 1921, 5944, 8989, 3432, 1, 1, 9, 78, 595, 3606, 15525, 40636, 48639, 12870, 1, 1, 10, 97, 848, 6145, 33876, 127905, 281488, 265729, 48620, 1
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 3, 4, 5, 6, 7, ... 1, 6, 13, 22, 33, 46, 61, ... 1, 20, 63, 136, 245, 396, 595, ... 1, 70, 321, 886, 1921, 3606, 6145, ... 1, 252, 1683, 5944, 15525, 33876, 65527, ... 1, 924, 8989, 40636, 127905, 324556, 712909, ... Seen as a triangle T(n, k): [0] 1; [1] 1, 1; [2] 1, 2, 1; [3] 1, 3, 6, 1; [4] 1, 4, 13, 20, 1; [5] 1, 5, 22, 63, 70, 1; [6] 1, 6, 33, 136, 321, 252, 1; [7] 1, 7, 46, 245, 886, 1683, 924, 1; [8] 1, 8, 61, 396, 1921, 5944, 8989, 3432, 1; [9] 1, 9, 78, 595, 3606, 15525, 40636, 48639, 12870, 1;
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Programs
-
Maple
# Seen as a triangle read by rows: T := (n, k) -> simplify(hypergeom([-k, -k], [1], n - k)): seq(lprint(seq(T(n, k), k = 0..n)), n = 0..9); # Peter Luschny, May 13 2024
-
Mathematica
T[n_, k_] := Sum[If[k == j == 0, 1, k^j] * Binomial[n, j]^2, {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 13 2021 *) (* Seen as a triangle read by rows: *) T[n_, k_] := HypergeometricPFQ[{-k, -k}, {1}, n - k]; Flatten[Table[T[n, k], {n, 0, 10}, {k, 0, n}]] (* Detlef Meya, May 13 2024 *)
Formula
T(n,k) is the coefficient of x^n in the expansion of (1 + (k+1)*x + k*x^2)^n.
T(n,k) = Sum_{j=0..n} k^j * binomial(n,j)^2.
T(n,k) = Sum_{j=0..n} (k-1)^(n-j) * binomial(n,j) * binomial(n+j,j).
n * T(n,k) = (k+1) * (2*n-1) * T(n-1,k) - (k-1)^2 * (n-1) * T(n-2,k).
T(n,k) = hypergeom([-k, -k], [1], n - k), (triangular form). - Detlef Meya, May 13 2024
Comments