cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A320430 Number of set partitions of [n] where the elements of each non-singleton block are pairwise coprime.

Original entry on oeis.org

1, 1, 2, 5, 10, 37, 60, 295, 658, 2621, 5368, 38535, 66506, 551529, 1234264, 5004697, 13721836, 143935131, 256835337, 2971237021, 6485081140, 35162930303, 95872321543, 1315397878401, 2399236456202, 25866803180347, 72374386475590, 563368417647305, 1479943119911866
Offset: 0

Views

Author

Gus Wiseman, Jan 08 2019

Keywords

Comments

Two or more numbers are pairwise coprime if no pair of them has a common divisor > 1.

Examples

			The a(4) = 10 set partitions: 1|2|3|4, 14|2|3, 13|2|4, 12|3|4, 1|23|4, 1|2|34, 134|2, 123|4, 14|23, 12|34.
		

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    Table[Length[spsu[Select[Subsets[Range[n]],Length[#]==1||CoprimeQ@@#&],Range[n]]],{n,10}]

Extensions

a(14)-a(15) from Alois P. Heinz, Jan 08 2019
a(16) from Alois P. Heinz, Mar 26 2020
a(17)-a(24) from Giovanni Resta, Mar 27 2020
a(25)-a(28) from Alois P. Heinz, Aug 03 2023

A320436 Irregular triangle read by rows where T(n,k) is the number of pairwise coprime k-subsets of {1,...,n}, 1 <= k <= A036234(n), where a single number is not considered to be pairwise coprime unless it is equal to 1.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 2, 1, 9, 7, 2, 1, 11, 8, 2, 1, 17, 19, 10, 2, 1, 21, 25, 14, 3, 1, 27, 37, 24, 6, 1, 31, 42, 26, 6, 1, 41, 73, 68, 32, 6, 1, 45, 79, 72, 33, 6, 1, 57, 124, 151, 105, 39, 6, 1, 63, 138, 167, 114, 41, 6, 1, 71, 159, 192, 128, 44, 6, 1, 79
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2019

Keywords

Examples

			Triangle begins:
   1
   1   1
   1   3   1
   1   5   2
   1   9   7   2
   1  11   8   2
   1  17  19  10   2
   1  21  25  14   3
   1  27  37  24   6
   1  31  42  26   6
   1  41  73  68  32   6
   1  45  79  72  33   6
   1  57 124 151 105  39   6
   1  63 138 167 114  41   6
   1  71 159 192 128  44   6
   1  79 183 228 157  56   8
		

Crossrefs

Except for the k = 1 column, same as A186974.
Row sums are A320426.
Second column is A015614.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n],{k}],CoprimeQ@@#&]],{n,16},{k,PrimePi[n]+1}]

A343653 Number of non-singleton pairwise coprime nonempty sets of divisors > 1 of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 7, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 7, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 13, 0, 1, 2, 0, 1, 7, 0, 2, 1, 7, 0, 6, 0, 1, 2, 2, 1, 7, 0, 4, 0, 1, 0, 13, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 25 2021

Keywords

Comments

First differs from A066620 at a(210) = 36, A066620(210) = 35.

Examples

			The a(n) sets for n = 6, 12, 24, 30, 36, 60, 72, 96:
  {2,3}  {2,3}  {2,3}  {2,3}    {2,3}  {2,3}    {2,3}  {2,3}
         {3,4}  {3,4}  {2,5}    {2,9}  {2,5}    {2,9}  {3,4}
                {3,8}  {3,5}    {3,4}  {3,4}    {3,4}  {3,8}
                       {5,6}    {4,9}  {3,5}    {3,8}  {3,16}
                       {2,15}          {4,5}    {4,9}  {3,32}
                       {3,10}          {5,6}    {8,9}
                       {2,3,5}         {2,15}
                                       {3,10}
                                       {3,20}
                                       {4,15}
                                       {5,12}
                                       {2,3,5}
                                       {3,4,5}
		

Crossrefs

The case of pairs is A089233.
The version with 1's, empty sets, and singletons is A225520.
The version for subsets of {1..n} is A320426.
The version for strict partitions is A337485.
The version for compositions is A337697.
The version for prime indices is A337984.
The maximal case with 1's is A343652.
The version with empty sets is a(n) + 1.
The version with singletons is A343654(n) - 1.
The version with empty sets and singletons is A343654.
The version with 1's is A343655.
The maximal case is A343660.
A018892 counts pairwise coprime unordered pairs of divisors.
A048691 counts pairwise coprime ordered pairs of divisors.
A048785 counts pairwise coprime ordered triples of divisors.
A051026 counts pairwise indivisible subsets of {1..n}.
A100565 counts pairwise coprime unordered triples of divisors.
A305713 counts pairwise coprime non-singleton strict partitions.
A343659 counts maximal pairwise coprime subsets of {1..n}.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Rest[Divisors[n]]],CoprimeQ@@#&]],{n,100}]

A320435 Regular triangle read by rows where T(n,k) is the number of relatively prime k-subsets of {1,...,n}, 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 4, 1, 1, 9, 10, 5, 1, 1, 11, 19, 15, 6, 1, 1, 17, 34, 35, 21, 7, 1, 1, 21, 52, 69, 56, 28, 8, 1, 1, 27, 79, 125, 126, 84, 36, 9, 1, 1, 31, 109, 205, 251, 210, 120, 45, 10, 1, 1, 41, 154, 325, 461, 462, 330, 165, 55, 11, 1, 1, 45, 196
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2019

Keywords

Comments

Two or more numbers are relatively prime if they have no common divisor > 1. A single number is not considered to be relatively prime unless it is equal to 1.

Examples

			Triangle begins:
    1
    1    1
    1    3    1
    1    5    4    1
    1    9   10    5    1
    1   11   19   15    6    1
    1   17   34   35   21    7    1
    1   21   52   69   56   28    8    1
    1   27   79  125  126   84   36    9    1
    1   31  109  205  251  210  120   45   10    1
    1   41  154  325  461  462  330  165   55   11    1
    1   45  196  479  786  923  792  495  220   66   12    1
    1   57  262  699 1281 1715 1716 1287  715  286   78   13    1
The T(6,2) = 11 sets are: {1,2}, {1,3}, {1,4}, {1,5}, {1,6}, {2,3}, {2,5}, {3,4}, {3,5}, {4,5}, {5,6}. Missing from this list are: {2,4}, {2,6}, {3,6}, {4,6}.
		

Crossrefs

Row sums are A085945.
Second column is A015614.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n],{k}],GCD@@#==1&]],{n,10},{k,n}]
  • PARI
    T(n,k) = sum(d=1, n\k, moebius(d)*binomial(n\d, k)) \\ Andrew Howroyd, Jan 19 2023

Formula

T(n,k) = Sum_{d=1..floor(n/k)} mu(d)*binomial(floor(n/d), k). - Andrew Howroyd, Jan 19 2023
Previous Showing 11-14 of 14 results.