A207035
Sum of all parts minus the total number of parts of the last section of the set of partitions of n.
Original entry on oeis.org
0, 1, 2, 5, 7, 16, 20, 39, 52, 86, 113, 184, 232, 353, 462, 661, 851, 1202, 1526, 2098, 2670, 3565, 4514, 5967, 7473, 9715, 12162, 15583, 19373, 24625, 30410, 38274, 47112, 58725, 71951, 89129, 108599, 133612, 162259, 198346, 239825, 291718, 351269, 425102
Offset: 1
For n = 7 the last section of the set of partitions of 7 looks like this:
.
. (. . . . . . 7)
. (. . . 4 . . 3)
. (. . . . 5 . 2)
. (. . 3 . 2 . 2)
. (1)
. (1)
. (1)
. (1)
. (1)
. (1)
. (1)
. (1)
. (1)
. (1)
. (1)
.
The sum of all parts = 7+4+3+5+2+3+2+2+1*11 = 39, on the other hand the total number of parts is 1+2+2+3+1*11 = 19, so a(7) = 39 - 19 = 20. Note that the number of dots in the picture is also equal to a(7) = 6+5+5+4 = 20.
Cf.
A006128,
A066186,
A135010,
A138121,
A138135,
A138137,
A138879,
A138880,
A187219,
A194548,
A207038.
-
b:= proc(n, i) option remember; local f, g;
if n=0 then [1, 0]
elif i<2 then [0, 0]
elif i>n then b(n, i-1)
else f:= b(n, i-1); g:= b(n-i, i);
[f[1]+g[1], f[2]+g[2] +g[1]*(i-1)]
fi
end:
a:= n-> b(n, n)[2]:
seq (a(n), n=1..50); # Alois P. Heinz, Feb 20 2012
-
b[n_, i_] := b[n, i] = Module[{f, g}, Which[n==0, {1, 0}, i<2, {0, 0}, i>n , b[n, i-1], True, f = b[n, i-1]; g = b[n-i, i]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + g[[1]]*(i-1)}]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Sep 13 2015, after Alois P. Heinz *)
A340423
Irregular triangle read by rows T(n,k) in which row n has length A000041(n-1) and every column k is A024916, n >= 1, k >= 1.
Original entry on oeis.org
1, 4, 8, 1, 15, 4, 1, 21, 8, 4, 1, 1, 33, 15, 8, 4, 4, 1, 1, 41, 21, 15, 8, 8, 4, 4, 1, 1, 1, 1, 56, 33, 21, 15, 15, 8, 8, 4, 4, 4, 4, 1, 1, 1, 1, 69, 41, 33, 21, 21, 15, 15, 8, 8, 8, 8, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 87, 56, 41, 33, 33, 21, 21, 15, 15, 15, 15, 8, 8, 8, 8
Offset: 1
Triangle begins:
1;
4;
8, 1;
15, 4, 1;
21, 8, 4, 1, 1;
33, 15, 8, 4, 4, 1, 1;
41, 21, 15, 8, 8, 4, 4, 1, 1, 1, 1;
56, 33, 21, 15, 15, 8, 8, 4, 4, 4, 4, 1, 1, 1, 1;
69, 41, 33, 21, 21, 15, 15, 8, 8, 8, 8, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1;
...
For n = 9 the length of row 9 is A000041(9-1) = 22.
From _Omar E. Pol_, Jan 08 2022: (Start)
For n = 9 the lateral view and top view of the tower described in A221529 look like as shown below:
_
22 1 | |
21 1 | |
20 1 | |
19 1 | |
18 1 | |
17 1 | |
16 1 |_|_
15 4 | |
14 4 | |
13 4 | |
12 4 |_ _|_
11 8 | | |
10 8 | | |
9 8 | | |
8 8 |_ _|_|_
7 15 | | |
6 15 |_ _ _| |_
5 21 | | |
4 21 |_ _ _|_ _|_
3 33 |_ _ _ _| | |_
2 41 |_ _ _ _|_|_ _|_ _
1 69 |_ _ _ _ _|_ _|_ _|
.
Level Row 9 Lateral view
k T(9,k) of the tower
.
_ _ _ _ _ _ _ _ _
|_| | | | | | | |
|_ _|_| | | | | |
|_ _| _|_| | | |
|_ _ _| _|_| |
|_ _ _| _| _ _|
|_ _ _ _| |
|_ _ _ _| _ _|
| |
|_ _ _ _ _|
.
Top view
of the tower
.
For n = 9 and k = 1 there are 69 cubic cells in the level 1 starting from the base of the tower, so T(9,1) = 69.
For n = 9 and k = 22 there is only one cubic cell in the level 22 (the top) of the tower, so T(9,22) = 1.
The volume of the tower (also the total number of cubic cells) represents the 9th term of the convolution of A000203 and A000041 hence it's equal to A066186(9) = 270, equaling the sum of the 9th row of triangle. (End)
The length of the m-th block in row n is
A187219(m), m >= 1.
Cf.
A000203,
A024916,
A196020,
A221529,
A236104,
A235791,
A237270,
A237271,
A237593,
A339278,
A262626,
A336811,
A338156,
A340035,
A341149,
A346533,
A350333.
-
f(n) = numbpart(n-1);
T(n, k) = {if (k > f(n), error("invalid k")); if (k==1, return (n)); my(s=0); while (k <= f(n-1), s++; n--; ); 1+s; } \\ A336811
g(n) = sum(k=1, n, n\k*k); \\ A024916
row(n) = vector(f(n), k, g(T(n,k))); \\ Michel Marcus, Jan 22 2022
A182727
Sum of largest parts of the shell model of partitions with n regions.
Original entry on oeis.org
1, 3, 6, 8, 12, 15, 20, 22, 26, 29, 35, 38, 43, 47, 54, 56, 60, 63, 69, 74, 78, 86, 89, 94, 98, 105, 108, 114, 119, 128, 130, 134, 137, 143, 148, 152, 160, 164, 171, 177, 182, 192, 195, 200, 204, 211, 214, 220, 225, 234, 239, 243, 251, 258, 264, 275, 277, 281
Offset: 1
For n = 6 the largest parts of the first six regions of the shell model of partitions are 1, 2, 3, 2, 4, 3, so a(6) = 1+2+3+2+4+3 = 15.
Written as a triangle begins:
1;
3;
6;
8, 12;
15, 20;
22, 26, 29, 35;
38, 43, 47, 54;
56, 60, 63, 69, 74, 78, 86;
89, 94, 98,105,108,114,119,128;
130,134,137,143,148,152,160,164,171,177,182,192;
195,200,204,211,214,220,225,234,239,243,251,258,264,275;
A196025
Total sum of parts greater than 1 in all the partitions of n except one copy of the smallest part greater than 1 of every partition.
Original entry on oeis.org
0, 0, 0, 2, 5, 16, 30, 63, 108, 189, 298, 483, 720, 1092, 1582, 2297, 3225, 4551, 6244, 8592, 11590, 15622, 20741, 27536, 36066, 47198, 61150, 79077, 101391, 129808, 164934, 209213, 263745, 331807, 415229, 518656, 644719, 799926, 988432, 1218979
Offset: 1
Cf.
A026905,
A046746,
A066186,
A135010,
A138121,
A182699,
A182707,
A182709,
A183152,
A193827,
A196039,
A196930,
A196931,
A198381.
A198381
Total number of parts greater than 1 in all partitions of n minus the number of partitions of n into parts each less than n.
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 6, 10, 20, 32, 54, 81, 128, 184, 273, 385, 549, 754, 1048, 1412, 1917, 2547, 3392, 4444, 5837, 7556, 9791, 12553, 16086, 20429, 25935, 32665, 41108, 51404, 64190, 79721, 98882, 122043, 150417, 184618, 226239
Offset: 0
Cf.
A000041,
A000065,
A000070,
A006128,
A026905,
A093694,
A096541,
A135010,
A138121,
A182699,
A182707,
A182709,
A183152,
A193827,
A196930,
A196931.
Original entry on oeis.org
0, 1, 3, 5, 8, 11, 15, 18, 22, 26, 31, 35, 40, 45, 51, 55, 60, 65, 71, 77, 83, 90, 95, 101, 107, 114, 120, 127, 134, 142, 147, 153, 159, 166, 173, 180, 188, 195, 203, 211, 219, 228, 234, 241, 248, 256, 263, 271, 279, 288, 296, 304, 313, 322, 331, 341
Offset: 1
Written as a triangle:
0;
1;
3;
5,8;
11,15;
18,22,26,31;
35,40,45,51;
55,60,65,71,77,83,90;
95,101,107,114,120,127,134,142;
147,153,159,166,173,180,188,195,203,211,219,228;
234,241,248,256,263,271,279,288,296,304,313,322,331,341;
A207379
Triangle read by rows: T(n,k) = number of parts that are in the k-th column of the last section of the set of partitions of n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 4, 4, 3, 2, 1, 1, 4, 4, 4, 3, 2, 1, 1, 7, 7, 6, 5, 3, 2, 1, 1, 8, 8, 8, 6, 5, 3, 2, 1, 1, 12, 12, 11, 10, 7, 5, 3, 2, 1, 1, 14, 14, 14, 12, 10, 7, 5, 3, 2, 1, 1, 21, 21, 20, 18, 14, 11, 7, 5, 3, 2, 1, 1
Offset: 1
Illustration of initial terms. First six rows of triangle as numbers of parts in the columns from the last sections of the first six natural numbers:
. 6
. 3 3
. 4 2
. 2 2 2
. 5 1
. 3 2 1
. 4 1 1
. 2 2 1 1
. 3 1 1 1
. 2 1 1 1 1
1 1 1 1 1 1
---------------------------------------------------
1, 1,1, 1,1,1, 2,2,1,1, 2,2,2,1,1, 4,4,3,2,1,1
...
Triangle begins:
1;
1, 1;
1, 1, 1;
2, 2, 1, 1;
2, 2, 2, 1, 1;
4, 4, 3, 2, 1, 1;
4, 4, 4, 3, 2, 1, 1;
7, 7, 6, 5, 3, 2, 1, 1;
8, 8, 8, 6, 5, 3, 2, 1, 1;
12, 12, 11, 10, 7, 5, 3, 2, 1, 1;
14, 14, 14, 12, 10, 7, 5, 3, 2, 1, 1;
21, 21, 20, 18, 14, 11, 7, 5, 3, 2, 1, 1;
A194795
Imbalance of the number of partitions of n.
Original entry on oeis.org
0, -1, 0, -2, 0, -4, 0, -7, 1, -11, 3, -18, 6, -28, 13, -42, 24, -64, 41, -96, 69, -141, 112, -208, 175, -303, 271, -437, 410, -629, 609, -898, 896, -1271, 1302, -1792, 1868, -2510, 2660, -3493, 3752, -4839, 5248, -6666, 7293, -9131, 10065, -12454
Offset: 1
For n = 6 the illustration of the three views of the shell model with 6 shells shows an imbalance (see below):
------------------------------------------------------
Partitions Tree Table 1.0
of 6. A194805 A135010
------------------------------------------------------
6 6 6 . . . . .
3+3 3 3 . . 3 . .
4+2 4 4 . . . 2 .
2+2+2 2 2 . 2 . 2 .
5+1 1 5 5 . . . . 1
3+2+1 1 3 3 . . 2 . 1
4+1+1 4 1 4 . . . 1 1
2+2+1+1 2 1 2 . 2 . 1 1
3+1+1+1 1 3 3 . . 1 1 1
2+1+1+1+1 2 1 2 . 1 1 1 1
1+1+1+1+1+1 1 1 1 1 1 1 1
------------------------------------------------------
.
. 6 3 4 2 1 3 5
. Table 2.0 . . . . 1 . . Table 2.1
. A182982 . . . 2 1 . . A182983
. . 3 . . 1 2 .
. . . 2 2 1 . .
. . . . . 1
------------------------------------------------------
The number of partitions with parts on the left hand side is equal to 7 and the number of partitions with parts on the right hand side is equal to 3, so a(6) = -7+3 = -4. On the other hand; for n = 6 the first n terms of A002865 (with positive indices) are 0, 1, 1, 2, 2, 4 therefore a(6) = 0-1+1-2+2-4 = -4.
-
with(combinat):
a:= proc(n) option remember;
(-1)^n *(numbpart(n-1)-numbpart(n)) +`if`(n>1, a(n-1), 0)
end:
seq(a(n), n=1..70); # Alois P. Heinz, Apr 09 2012
-
a[n_] := a[n] = (-1)^n*(PartitionsP[n-1]-PartitionsP[n]) + If[n>1, a[n-1], 0]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
nmax = 60; Rest[CoefficientList[Series[x/(1-x) - (1+x)/(1-x) * Product[1/((1 + x^(2*k-1))*(1 - x^(2*k))), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Nov 11 2015 *)
nmax = 60; Rest[CoefficientList[Series[-x/(1+x) - (1-x)/(1+x) * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Nov 11 2015 *)
A210942
Triangle read by rows in which row n lists the parts > 1 of the n-th region of the shell model of partitions, with a(1) = 1.
Original entry on oeis.org
1, 2, 3, 2, 4, 2, 3, 5, 2, 2, 4, 2, 3, 6, 3, 2, 2, 3, 5, 2, 4, 7, 3, 2, 2, 2, 4, 2, 3, 6, 3, 2, 2, 5, 4, 8, 4, 3, 2, 2, 2, 2, 3, 5, 2, 4, 7, 3, 2, 2, 3, 6, 3, 5, 9, 4, 3, 3, 2, 2, 2, 2, 2, 4, 2, 3, 6, 3, 2, 2, 5, 4, 8, 4, 3, 2, 2, 2, 2, 4, 7, 3, 6, 5, 10, 5
Offset: 1
Written as a triangle begins:
1;
2;
3;
2;
4,2;
3;
5,2,
2;
4,2;
3;
6,3,2,2;
3;
5,2;
4;
7,3,2,2;
Cf.
A135010,
A138121,
A182699,
A182709,
A183152,
A186114,
A187219,
A194436-
A194439,
A194447-
A194448,
A196025,
A198381,
A206437,
A210941.
A211026
Number of segments needed to draw (on the infinite square grid) a diagram of regions and partitions of n.
Original entry on oeis.org
4, 6, 8, 12, 16, 24, 32, 46, 62, 86, 114, 156, 204, 272, 354, 464, 596, 772, 982, 1256, 1586, 2006, 2512, 3152, 3918, 4874, 6022, 7438, 9132, 11210, 13686, 16700, 20288, 24622, 29768, 35956, 43276, 52032, 62372, 74678, 89168, 106350
Offset: 1
Cf.
A000041,
A052810,
A135010,
A139582,
A141285,
A186412,
A186114,
A187219,
A193870,
A194446,
A194447,
A206437,
A211009
Comments