cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A212614 Least k > 1 such that the product tri(n) * tri(k) is triangular, or zero if no such k exists, where tri(k) is the k-th triangular number.

Original entry on oeis.org

2, 5, 3, 6, 2, 4, 10, 0, 13, 7, 5, 4, 9, 3, 20, 208, 185, 14, 5, 2, 6, 14, 12, 115, 55, 37, 748, 11, 12, 1358, 90, 90, 6, 3, 21, 11, 26, 10, 33, 21, 265, 51, 61, 75, 96, 131, 201, 411, 0, 10, 7, 148, 113, 92, 4, 68, 364, 329, 50, 5083, 43, 329594, 38, 36, 2414
Offset: 1

Views

Author

T. D. Noe, May 31 2012

Keywords

Comments

That is, tri(k) = k(k+1)/2. It is provable that a(8) and a(49) are zero.
Other terms that are zero are given in sequence A001108. Note that a(71) = 2076978. In general, a Pell equation of the form x^2 = 1 + 2*n(n+1)*y*(y+1) must be solved to find a(n). - T. D. Noe, Jun 03 2012

Examples

			For n = 2, tri(n) = 3 and the first k is 5 because tri(5) = 15 and 3*15 = 45 is triangular.
		

Crossrefs

Cf. A188630 (triangular numbers that are tri(x) * tri(y) for some x,y > 1).
Cf. A212615 (similar sequence for pentagonal numbers).
Cf. A000217 (triangular numbers).

Programs

  • Mathematica
    kMax = 10^6; TriangularQ[n_] := IntegerQ[Sqrt[1 + 8*n]]; Table[t = n*(n+1)/2; k = 2; While[t2 = k*(k+1)/2; k < kMax && ! TriangularQ[t*t2], k++]; If[k == kMax, 0, k], {n, 65}]

A225440 Triangular numbers that are the product of three distinct triangular numbers greater than 1.

Original entry on oeis.org

378, 630, 990, 3240, 4095, 4950, 5460, 9180, 15400, 19110, 25200, 31878, 37128, 37950, 39060, 52650, 61425, 79800, 97020, 103740, 105570, 122265, 145530, 157080, 161028, 176715, 192510, 221445, 265356, 288420, 304590, 306936, 346528, 437580, 500500, 545490, 583740
Offset: 1

Views

Author

Alex Ratushnyak, May 08 2013

Keywords

Comments

Triangular numbers of the form triangular(x) * triangular(y) * triangular(z), x > y > z > 1.

Examples

			378 = 3 * 6 * 21.
630 = 3 * 10 * 21.
990 = 3 * 6 * 55.
		

Crossrefs

Programs

  • C
    #include 
    typedef unsigned long long U64;
    U64 isTriangular(U64 a) {  // ! Must be a < (1<<63)
        U64 s = sqrt(a*2);
        if (a>=(1ULL<<63)) exit(1);
        return (s*(s+1)/2 == a);
    }
    int compare64(const void *p1, const void *p2) {
      if (*(U64*)p1 == *(U64*)p2) return 0;
      if (*(U64*)p1 < *(U64*)p2) return -1;
      return 1;
    }
    #define TOP (1<<21)
    U64 d[TOP];
    int main() {
      U64 c, x, tx, y, ty, z, tz, p = 0;
        for (x = tx = 3; tx <= TOP; tx+=x, ++x) {
        for (y = ty = 3; ty < tx;   ty+=y, ++y) {
        for (z = tz = 3; tz < ty;   tz+=z, ++z) {
        c = tx*ty*tz;
        if (c <= TOP*18 && isTriangular(c))  d[p++] = c;
      }}}
      qsort(d, p, 8, compare64);
      for (x=c=0; cx) printf("%llu, ", y), x=y;
      return 0;
    }

A264961 Numbers that are products of two triangular numbers in more than one way.

Original entry on oeis.org

36, 45, 210, 315, 360, 630, 780, 990, 1260, 1386, 1540, 1800, 2850, 2970, 3510, 3570, 3780, 4095, 4788, 4851, 6300, 7920, 8415, 8550, 8778, 9450, 11700, 11781, 14850, 15400, 15561, 16380, 17640, 17955, 18018, 18648, 19110, 20790, 21420, 21450, 21528, 25116, 25200, 26565, 26775, 26796, 27720, 28980
Offset: 1

Views

Author

R. J. Mathar, Nov 29 2015

Keywords

Comments

One of the factors in the product may be 1 = A000217(1). We count the ways of writing n = A000217(i)*A000217(j) with i <= j, unordered factorizations.

Examples

			36 = 1*36 = 6*6. 45 = 1*45 = 3*15. 210 = 1*210 = 10*21. 315 = 3*105 = 15*21. 360 = 3*120 = 10*36. 630 = 1*630 = 3*210 = 6*105. 3780= 6*360 = 10 * 378 = 36*105.
		

Crossrefs

Subsequence of A085780. A188630 and A110904 are subsequences of this.

Programs

  • Maple
    A264961ct := proc(n)
        local ct,d ;
        ct := 0 ;
        for d in numtheory[divisors](n) do
            if d^2 > n then
                return ct;
            end if;
            if isA000217(d) then
                if isA000217(n/d) then
                    ct := ct+1 ;
                end if;
            end if;
        end do:
        return ct;
    end proc:
    for n from 1 to 30000 do
        if A264961ct(n) > 1 then
            printf("%d,",n) ;
        end if;
    end do:
  • Mathematica
    lim = 10000; t = Accumulate[Range@lim]; f[n_] := Select[{#, n/#} & /@ Select[Divisors@ n, # <= Sqrt@ n && MemberQ[t, #] &], MemberQ[t, Last@ #] &]; Select[Range@ lim, Length@ f@ # == 2 &] (* Michael De Vlieger, Nov 29 2015 *)
  • Python
    from _future_ import division
    mmax = 10**3
    tmax, A264961_dict = mmax*(mmax+1)//2, {}
    ti = 0
    for i in range(1,mmax+1):
        ti += i
        p = ti*i*(i-1)//2
        for j in range(i,mmax+1):
            p += ti*j
            if p <= tmax:
                A264961_dict[p] = 2 if p in A264961_dict else 1
            else:
                break
    A264961_list = sorted([i for i in A264961_dict if A264961_dict[i] > 1]) # Chai Wah Wu, Nov 29 2015

A196568 Binomial coefficients of the form C(k, 3) that are products of two other binomial coefficients of the form C(k, 3).

Original entry on oeis.org

560, 19600, 43680, 893200, 1521520, 7207200, 29269240, 2845642800, 26595476600, 249466897680
Offset: 1

Views

Author

Kausthub Gudipati, Oct 04 2011

Keywords

Comments

a(11), if it exists, > C(5*10^6, 3). - D. S. McNeil, Oct 26 2011

Examples

			     560 = C( 16, 3) = C( 8, 3) * C( 5, 3);
   19600 = C( 50, 3) = C(16, 3) * C( 7, 3);
   43680 = C( 65, 3) = C(14, 3) * C(10, 3);
  893200 = C(176, 3) = C(30, 3) * C(12, 3).
		

Crossrefs

Subsequence of A364151 (more than 2 factors allowed).
Cf. A188630 (analog for triangular numbers).

Extensions

Name clarified by Pontus von Brömssen, Jun 22 2023

A226389 Triangular numbers representable as triangular(x)*triangular(y)+1.

Original entry on oeis.org

1, 10, 91, 136, 946, 1711, 1891, 5671, 8911, 10585, 11026, 11935, 13861, 19306, 21736, 26335, 32131, 36856, 44551, 49141, 65341, 107416, 138601, 239086, 305371, 351541, 366796, 459361, 849556, 873181, 933661, 1100386, 1413721, 1516411, 1904176, 2297296, 2467531, 3837835
Offset: 1

Views

Author

Alex Ratushnyak, Jun 06 2013

Keywords

Comments

Cases with x=y are included.
The associated indices in A000217 are 1, 4, 13, 16, 43, 58, 61, 106, 133, 145, 148, 154,...

Examples

			10 = 3 * 3 + 1,
91 = 6 * 15 + 1,
3837835 = 378 * 10153 + 1.
		

Crossrefs

Programs

  • Maple
    A000217inv:=proc(n) local t1; t1:=floor(sqrt(2*n)); if n = t1*(t1+1)/2 then return t1 ; else return -1; end if; end proc:
    A000217 := proc(n)
        n*(n+1)/2 ;
    end proc:
    isA226389 := proc(n)
        local Tx, Ty;
        if n = 1 then
            return true;
        elif A000217inv(n) >= 0 then
            for x from 0 do
                Tx := A000217(x) ;
                if Tx+1 > n then
                    return false;
                end if;
                for y from 0 to x do
                    Ty := A000217(y) ;
                    if Tx*Ty+1 >n then
                        break;
                    elif Tx*Ty+1 = n then
                        return true;
                    end if;
                end do:
            end do:
        else
            false;
        end if;
    end proc:
    for n from 0 do
        Tn := A000217(n) ;
        if isA226389(Tn) then
            printf("%d,\n",Tn) ;
        end if;
    end do: # R. J. Mathar, Jun 06 2013

A296097 Triangular numbers that can be represented as a product of two triangular numbers greater than 1, as a product of three triangular numbers greater than 1, and as a product of four triangular numbers greater than 1.

Original entry on oeis.org

25200, 61425, 145530, 500500, 749700, 828828, 1185030, 2031120, 2162160, 2821500, 4573800, 5364450, 13857480, 17907120, 20991960, 21783300, 24643710, 27162135, 29610360, 30933045, 34283340, 37191000, 40901490, 60769800, 64292130, 71216145, 76576500, 90041490
Offset: 1

Views

Author

Alex Ratushnyak, Dec 04 2017

Keywords

Comments

Triangular numbers in the products need not be distinct, that is, duplicates in the products are allowed.
A subsequence of A188630 and of A295769.

Examples

			25200 = 210 * 120 = 120 * 21 * 10 = 28 * 15 * 10 * 6.
		

Crossrefs

A379609 Triples (x,y,z) such that T(x)*T(y) = T(z) with 2 <= x <= y, where T(n) is the n-th triangular number, sorted first by values of z, then by values of x.

Original entry on oeis.org

3, 3, 8, 2, 5, 9, 4, 6, 20, 2, 20, 35, 3, 14, 35, 4, 12, 39, 5, 11, 44, 7, 10, 55, 5, 19, 75, 3, 34, 84, 9, 13, 90, 6, 21, 98, 2, 76, 132, 6, 33, 153, 4, 55, 175, 14, 18, 189, 13, 20, 195, 12, 23, 207, 15, 20, 224, 14, 22, 230, 11, 28, 231, 12, 29, 260, 7, 51, 272, 10, 38, 285, 11, 36, 296, 5, 90, 350, 3, 143, 351, 10, 50, 374, 7, 75, 399, 9, 68, 459, 19, 34, 475
Offset: 1

Views

Author

Kelvin Voskuijl, Dec 27 2024

Keywords

Examples

			Triples begin:
  3,  3,  8;
  2,  5,  9;
  4,  6, 20;
  2, 20, 35;
  3, 14, 35;
  4, 12, 39;
  5, 11, 44;
  7, 10, 55;
  ...
The triple 2,5,9 is in this sequence because the second triangular number (3) times the fifth (15) is the ninth (45).
		

Crossrefs

Cf. A000217, A188630, A198453 (additive), A225390.

A225592 a(n) = size of the network of triangular(n). Distinct triangular numbers T and R are directly connected if R = T*k, and k>0 is a triangular number less than T. Numbers belong to the same network if there is a chain of direct connections between them.

Original entry on oeis.org

1, 1, 1, 1, 2, 7, 1, 1, 2, 8, 2, 3, 7, 7, 1, 1, 1, 5, 4, 7, 2, 3, 4, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 8, 7, 2, 4, 6, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 8, 1, 1, 1, 2, 1, 4, 1, 2, 2, 1, 1, 1, 3, 2, 3, 1, 1, 1, 1, 4, 3, 2, 5, 2, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 7, 2
Offset: 1

Views

Author

Alex Ratushnyak, May 11 2013

Keywords

Examples

			Triangular(6) = 21 belongs to the network with the following members: 21, 105, 210, 630, 19110, 25200, 145530. So a(6) = 7.
Triangular(133) = 8911 belongs to the network with the following members: 8911, 810901, 28158760, 3104129028, 328779810450, 543633020560, 18474540054600, 45742477468287600, 1553903798634573750. So a(133) = 9.
		

Crossrefs

Programs

  • Python
    def isTriangular(a):
        sr = 1 << (a.bit_length() >> 1)
        a += a
        while a < sr*(sr+1):  sr>>=1
        b = sr>>1
        while b:
          s = sr+b
          if a >= s*(s+1):  sr = s
          b>>=1
        return (a==sr*(sr+1))
    network = [0]*1000
    readPos = writePos = 0
    def addConnection(R):
      global writePos
      if isTriangular(R):
        for j in range(readPos):
          if network[j]==R:  return
        network[writePos] = R
        writePos += 1
    for i in range(1, 1000000):
        readPos, writePos = 0, 1
        network[0] = i*(i+1)//2
        while readPos < writePos:
          T = network[readPos]
          readPos += 1
          n = k = 3
          while k < T:
            addConnection(T*k)
            if T % k == 0 and T//k > k:  addConnection(T//k)
            k += n
            n += 1
        print(readPos, end=', ')

A295768 Triangular numbers that can be represented as a sum of two distinct triangular numbers, and as a product of two triangular numbers greater than 1.

Original entry on oeis.org

990, 1540, 2850, 4851, 8778, 11781, 15400, 26796, 43956, 61425, 61776, 70125, 105570, 145530, 176715, 189420, 270480, 303810, 349866, 437580, 526851, 715806, 719400, 749700, 799480, 810901, 828828, 1037520, 1050525, 1185030, 1493856, 1788886, 1921780, 2001000
Offset: 1

Views

Author

Alex Ratushnyak, Nov 27 2017

Keywords

Comments

Intersection of A188630 and A260647.

Examples

			990 is representable as a product of two triangular numbers, 990 = 660 * 15, and as a sum, 990 = 780 + 210, therefore 990 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    maxTerm = 3*10^6; imax = Ceiling[(Sqrt[8*maxTerm + 1] - 1)/2];
    TriangularQ[n_] := IntegerQ[Sqrt[8n + 1]];
    t[op_] := Table[If[1 < i < j, op[i*(i + 1)/2 , j*(j + 1)/2], Nothing], {i, 2, imax}, {j, i + 1, imax}] // Flatten // Select[#, # <= maxTerm && TriangularQ[#]&]& // Union;
    Intersection[t[Plus], t[Times]] (* Jean-François Alcover, Dec 05 2017 *)

A296098 a(n) is the smallest triangular number (A000217) that can be represented as a product of k triangular numbers greater than 1 for all k = 1,2,...,n. a(n)=-1 if no such triangular number exists.

Original entry on oeis.org

3, 36, 630, 25200, 25200, 2821500, 55030954895280, 55030954895280, 55030954895280, 55030954895280, 55030954895280, 55030954895280
Offset: 1

Views

Author

Alex Ratushnyak, Dec 04 2017

Keywords

Comments

From Jon E. Schoenfield, Apr 21 2018: (Start)
Of the 482 triangular numbers < 55030954895280 that can be represented as a product of seven triangular numbers greater than 1, the only one that can be represented as a product of two triangular numbers greater than 1 is 218434391280, which cannot be represented as a product of 3 triangular numbers greater than 1. Thus, a(n) >= 55030954895280 for all n >= 7.
However, 55030954895280 can be represented (see Example section) as a product of k triangular numbers greater than 1 for all k in 1,2,...,12 (but not for k=13), so a(7) = a(8) = ... = a(12) = 55030954895280 (and, for each n > 12, a(n) > 55030954895280, or a(n) = -1 if no such number exists).
If, for some integer N > 12, it could be proved that a(N) = -1, then it would also be established that a(n) = -1 for every n > N. (End)

Examples

			25200 is the smallest triangular number representable as a product of 2, 3 and 4 triangular numbers, 25200 = 210 * 120 = 120 * 21 * 10 = 28 * 15 * 10 * 6.
Therefore a(4)=25200.
Also, 25200 = 28 * 10 * 10 * 3 * 3, and therefore a(5)=25200.
From _Jon E. Schoenfield_, Apr 21 2018: (Start)
Let f(k_1, k_2, ..., k_m) = Product_{j=1..m} A000217(k_j) = Product_{j=1..m} (k_j*(k_j + 1)/2). Then, since no smaller number can be represented as a product of k triangular numbers greater than 1 for all k in 1,2,...,7,
a(7) = 55030954895280
     = f(10491039)
     = f(2261, 6560)
     = f(6, 493, 6560)
     = f(28, 39, 81, 323)
     = f(17, 18, 27, 40, 116)
     = f(4, 8, 17, 28, 38, 81)
     = f(2, 3, 17, 18, 26, 28, 40)
     = f(2, 2, 2, 2, 2, 17, 144, 532)
     = f(2, 2, 2, 2, 12, 17, 18, 28, 40)
     = f(2, 2, 2, 2, 2, 2, 3, 3, 40, 2261)
     = f(2, 2, 2, 2, 2, 2, 2, 2, 16, 29, 532)
     = f(2, 2, 2, 2, 2, 2, 2, 2, 2, 7, 40, 493)
and a(7) = a(8) = a(9) = a(10) = a(11) = a(12).
(End)
		

Crossrefs

Formula

a(n) >= A212616(n) (unless a(n) = -1). - Jon E. Schoenfield, Apr 21 2018

Extensions

a(7)-a(12) from Jon E. Schoenfield, Apr 21 2018
Previous Showing 11-20 of 20 results.