cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A188676 Alternate partial sums of the binomial coefficients binomial(3*n,n).

Original entry on oeis.org

1, 2, 13, 71, 424, 2579, 15985, 100295, 635176, 4051649, 25993366, 167543354, 1084134346, 7038291098, 45821937982, 299045487602, 1955803426045, 12815265660680, 84111082917925, 552872886403775, 3638971619401720
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[3k, k](-1)^(n-k), {k, 0, n}], {n, 0, 20}]
  • Maxima
    makelist(sum(binomial(3*k,k)*(-1)^(n-k),k,0,n),n,0,20);

Formula

a(n) = sum(k=0..n, (-1)^(n-k)*binomial(3*k,k) ).
Recurrence: 2*(n+2)*(2n+3)*a(n+2)-(23*n^2+67*n+48)*a(n+1)-3*(3*n+4)*(3n+5)*a(n)=0.
G.f.: 2*cos((1/3)*arcsin(3*sqrt(3*x)/2))/((1+x)*sqrt(4-27*x)).
a(n) ~ 3^(3*n+7/2)/(62*4^n*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 20 2012

A188681 a(n) = binomial(3*n,n)^2/(2*n+1).

Original entry on oeis.org

1, 3, 45, 1008, 27225, 819819, 26509392, 901402560, 31818681873, 1156122556875, 42985853635725, 1628541825580800, 62667882587091600, 2443473892345873968, 96351855806554401600, 3836565846094702507776, 154071018890153214025473
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Binomial[3k,k]^2/(2k+1),{k,0,20}]
    CoefficientList[Series[HypergeometricPFQ[{1/3,1/3,2/3,2/3}, {1/2,1,3/2}, (729 x)/16],{x,0,20}],x]  (* Harvey P. Dale, Apr 22 2011 *)
  • Maxima
    makelist(binomial(3*k,k)^2/(2*k+1),k,0,20);

Formula

Recurrence: 4*(n+1)^2*(2*n+1)*(2*n+3)*a(n+1)-9*(3*n+1)^2*(3*n+2)^2*a(n)=0.
a(n) ~ 3^(6*n+1)/(Pi*2^(4*n+3)*n^2). - Vaclav Kotesovec, Aug 16 2013

A188679 Partial sums of binomial(3n,n)^2.

Original entry on oeis.org

1, 10, 235, 7291, 252316, 9270325, 353892421, 13874930821, 554792522662, 22521121103287, 925224047453512, 38381686035811912, 1605078750713101912, 67578873844051699048, 2861782692234129345448, 121795323921169907086504
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[3k,k]^2,{k,0,n}],{n,0,20}]
    Accumulate[Table[Binomial[3n,n]^2,{n,0,20}]] (* Harvey P. Dale, Sep 26 2019 *)
  • Maxima
    makelist(sum(binomial(3*k,k)^2,k,0,n),n,0,20);

Formula

a(n) = sum(C(3k,k)^2, k=0..n).
Recurrence: 4*(2*n^2+7*n+6)^2 * a(n+2) -(745*n^4+4486*n^3+10093*n^2 +10056*n+3744) * a(n+1) +9*(9*n^2+27*n+20)^2 * a(n) = 0.
G.f.: (1-x)^(-1)*F(1/3,1/3,2/3,2/3;1/2,1/2,1;729*x/16), where F(a1,a2,a3,a4;b1,b2,b3;z) is a hypergeometric series.
a(n) ~ 3^(6*n+7)/(713*Pi*n*2^(4*n+2)). - Vaclav Kotesovec, Aug 06 2013

A188683 Alternate partial sums of binomial(3n,n)^2/(2n+1).

Original entry on oeis.org

1, 2, 43, 965, 26260, 793559, 25715833, 875686727, 30942995146, 1125179561729, 41860674073996, 1586681151506804, 61081201435584796, 2382392690910289172, 93969463115644112428, 3742596382979058395348
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Crossrefs

Cf. Alternate partial sums of binomial(3n,n)^2/(2n+1)^k: A188680 (k=0), this sequence (k=1), A188685 (k=2).
Cf. Partial sums of binomial(3n,n)^2/(2n+1)^k: A188679 (k=0), A188682 (k=1), A188684 (k=2).

Programs

  • Mathematica
    Table[Sum[Binomial[3k,k]^2(-1)^(n-k)/(2k+1),{k,0,n}],{n,0,20}]
  • Maxima
    makelist(sum(binomial(3*k,k)^2*(-1)^(n-k)/(2*k+1),k,0,n),n,0,20);

Formula

a(n) = sum(binomial(3*k,k)^2*(-1)^(n-k)/(2*k+1), k=0..n).
Recurrence: 4*(n+2)^2*(4*n^2+16*n+15) * a(n+2) -(713*n^4+4246*n^3 +9421*n^2 +9224*n+3360) * a(n+1) -9*(9*n^2+27*n+20)^2 * a(n) = 0.
a(n) ~ 3^(6*n+7)/(745*Pi*n^2*2^(4*n+3)). - Vaclav Kotesovec, Aug 06 2013

A188682 Partial sums of binomials bin(3n,n)^2/(2n+1).

Original entry on oeis.org

1, 4, 49, 1057, 28282, 848101, 27357493, 928760053, 32747441926, 1188869998801, 44174723634526, 1672716549215326, 64340599136306926, 2507814491482180894, 98859670298036582494, 3935425516392739090270, 158006444406545953115743
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[3k,k]^2/(2k+1),{k,0,n}],{n,0,20}]
    Accumulate[Table[Binomial[3n,n]^2/(2n+1),{n,0,20}]] (* Harvey P. Dale, Jul 10 2016 *)
  • Maxima
    makelist(sum(binomial(3*k,k)^2/(2*k+1),k,0,n),n,0,20);

Formula

a(n) = sum(bin(3*k,k)^2/(2*k+1),k=0..n).
Recurrence: 4*(n+2)^2*(4*n^2+16*n+15) * a(n+2) -(745*n^4+4502*n^3+10181*n^2+10216*n+3840) * a(n+1) +9*(9*n^2+27*n+20)^2 *a(n) = 0.
a(n) ~ 3^(6*n+7)/(713*Pi*n^2*2^(4*n+3)). - Vaclav Kotesovec, Aug 06 2013

A346628 G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x) * A(x)^3.

Original entry on oeis.org

1, 0, 2, 5, 22, 92, 415, 1927, 9198, 44804, 221880, 1113730, 5653747, 28975962, 149725355, 779178092, 4080167790, 21483383992, 113670233848, 604070682354, 3222823434608, 17255628041720, 92689459311470, 499359484166994, 2697571066055611, 14608820993453132
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 25 2021

Keywords

Comments

Inverse binomial transform of A001764.

Crossrefs

Programs

  • Mathematica
    nmax = 25; A[] = 0; Do[A[x] = 1/(1 + x) + x (1 + x) A[x]^3 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    nmax = 25; CoefficientList[Series[Sum[(Binomial[3 k, k]/(2 k + 1)) x^k/(1 + x)^(k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
    Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[3 k, k]/(2 k + 1), {k, 0, n}], {n, 0, 25}]

Formula

G.f.: Sum_{k>=0} ( binomial(3*k,k) / (2*k + 1) ) * x^k / (1 + x)^(k+1).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(3*k,k) / (2*k + 1).
a(n) ~ 23^(n + 3/2) / (81 * sqrt(Pi) * n^(3/2) * 2^(2*n+2)). - Vaclav Kotesovec, Jul 30 2021
D-finite with recurrence +2*n*(2*n+1)*a(n) -(15*n-4)*(n-1)*a(n-1) -2*(n-1)*(21*n-22)*a(n-2) -23*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Aug 05 2021

A364592 G.f. satisfies A(x) = 1/(1-x) + x*(1-x)*A(x)^4.

Original entry on oeis.org

1, 2, 8, 49, 365, 3001, 26193, 238119, 2230151, 21368167, 208459419, 2063563791, 20675793627, 209277092776, 2136720896514, 21979879393677, 227582114799201, 2369983696546858, 24806423607475896, 260829829404493787, 2753744691645428399
Offset: 0

Views

Author

Seiichi Manyama, Jul 29 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+k, 2*k)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+k,2*k) * binomial(4*k,k) / (3*k+1).

A346762 G.f. A(x) satisfies: A(x) = 1 / (1 - 2*x) + x * (1 - 2*x) * A(x)^3.

Original entry on oeis.org

1, 3, 11, 50, 271, 1655, 10900, 75388, 539295, 3954593, 29557251, 224308078, 1723659436, 13384272660, 104855628776, 827760536528, 6578127170319, 52581460222645, 422478996770305, 3410174204693310, 27640220748529799, 224866485110361767, 1835589569664256976
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 02 2021

Keywords

Comments

Second binomial transform of A001764.

Crossrefs

Programs

  • Mathematica
    nmax = 22; A[] = 0; Do[A[x] = 1/(1 - 2 x) + x (1 - 2 x) A[x]^3 + O[x]^(nmax + 1) // Normal,nmax + 1]; CoefficientList[A[x], x]
    Table[Sum[Binomial[n, k] Binomial[3 k, k] 2^(n - k)/(2 k + 1), {k, 0, n}], {n, 0, 22}]
    Table[2^n HypergeometricPFQ[{1/3, 2/3, -n}, {1, 3/2}, -27/8], {n, 0, 22}]

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * binomial(3*k,k) * 2^(n-k) / (2*k + 1).
a(n) ~ 35^(n + 3/2) / (81 * sqrt(Pi) * n^(3/2) * 4^(n+1)). - Vaclav Kotesovec, Nov 26 2021

A378327 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n*k,k) / ((n-1)*k + 1).

Original entry on oeis.org

1, 2, 5, 25, 257, 4361, 104425, 3241316, 123865313, 5628753361, 296671566941, 17798975341467, 1197924420178381, 89394126594968755, 7326377073291002147, 654215578855903951141, 63225054646397348577601, 6575059243843086616460321, 732138834180570978286488133
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k] Binomial[n*k, k]/((n-1)*k + 1), {k, 0, n}], {n, 0, 20}]

Formula

a(n) ~ exp(n + exp(-1) - 1/2) * n^(n - 5/2) / sqrt(2*Pi).

A381828 Expansion of ( (1/x) * Series_Reversion( x * ((1-x) * (1-x+x^2))^2 ) )^(1/2).

Original entry on oeis.org

1, 2, 10, 65, 480, 3824, 32039, 278256, 2482578, 22617830, 209540672, 1968031520, 18696064179, 179332892186, 1734451272240, 16895744042472, 165621305486976, 1632518433458400, 16170959983623314, 160888256475481560, 1607061512154585046, 16110030923830784248
Offset: 0

Views

Author

Seiichi Manyama, Mar 08 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec((serreverse(x*((1-x)*(1-x+x^2))^2)/x)^(1/2))

Formula

G.f. A(x) satisfies A(x) = C(x*A(x)) / (1 - x*A(x)^2), where C(x) is the g.f. of A000108.
a(n) = Sum_{k=0..n} binomial(2*n+k+1,k) * binomial(3*n-2*k,n-k)/(2*n+k+1).
D-finite with recurrence +432*n*(n-1)*(n-2)*(2*n+1)*(2*n-1)*(2*n-3)*(262261060139434887136491*n -880264534325728808928710)*a(n) +24*(n-1)*(n-2)*(2*n-1)*(2*n-3)*(9441398165019655936913676*n^3 -1563359509176097527827297363*n^2 +8122005300033248841454135898*n -10005843136737488906545668303)*a(n-1) -8*(n-2)*(2*n-3)*(26904862014415612504704360259*n^5 -439294650192331167438487778367*n^4 +2462557164881954865201862193560*n^3 -6116391863054255517662202621591*n^2 +6730597164009721987374566778403*n -2508886036978141982914230533400)*a(n-2) +2*(3280856375160701992555505608813*n^7 -60505233834440544774094319915261*n^6 +458650706405377012453301766859297*n^5 -1843996542698657351167896639498197*n^4 +4199211312282774397146042070543498*n^3 -5283107978583820687249123910721062*n^2 +3195330463869279708956264243293272*n -571272270914692694572799416918200)*a(n-3) +3*(-10499174187769013704183946812135*n^7 +189831332911960443054698384732480*n^6 -1395267797131742288585801071743534*n^5 +5221938509132769354051685228032464*n^4 -9839826026184653630837080778918103*n^3 +6229383740555425356174546560814416*n^2 +6216439623275682391743799709941612*n -8390747283534155728971424365124320)*a(n-4) -112*(7*n-31)*(7*n-32) *(2094251874056865218841652*n -5622141652266976856940223)*(7*n-29)*(7*n-26) *(7*n-30)*(7*n-27)*a(n-5)=0. - R. J. Mathar, Mar 10 2025
Previous Showing 11-20 of 25 results. Next