A188676
Alternate partial sums of the binomial coefficients binomial(3*n,n).
Original entry on oeis.org
1, 2, 13, 71, 424, 2579, 15985, 100295, 635176, 4051649, 25993366, 167543354, 1084134346, 7038291098, 45821937982, 299045487602, 1955803426045, 12815265660680, 84111082917925, 552872886403775, 3638971619401720
Offset: 0
Cf.
A005809,
A001764,
A104859,
A188678,
A188679,
A188680,
A188681,
A188682,
A188683,
A188684,
A188685,
A188686,
A188687.
-
Table[Sum[Binomial[3k, k](-1)^(n-k), {k, 0, n}], {n, 0, 20}]
-
makelist(sum(binomial(3*k,k)*(-1)^(n-k),k,0,n),n,0,20);
A188681
a(n) = binomial(3*n,n)^2/(2*n+1).
Original entry on oeis.org
1, 3, 45, 1008, 27225, 819819, 26509392, 901402560, 31818681873, 1156122556875, 42985853635725, 1628541825580800, 62667882587091600, 2443473892345873968, 96351855806554401600, 3836565846094702507776, 154071018890153214025473
Offset: 0
Cf.
A005809,
A001764,
A188676,
A104859,
A188678,
A188679,
A188680,
A188682,
A188683,
A188684,
A188685,
A188686,
A188687.
-
Table[Binomial[3k,k]^2/(2k+1),{k,0,20}]
CoefficientList[Series[HypergeometricPFQ[{1/3,1/3,2/3,2/3}, {1/2,1,3/2}, (729 x)/16],{x,0,20}],x] (* Harvey P. Dale, Apr 22 2011 *)
-
makelist(binomial(3*k,k)^2/(2*k+1),k,0,20);
A188679
Partial sums of binomial(3n,n)^2.
Original entry on oeis.org
1, 10, 235, 7291, 252316, 9270325, 353892421, 13874930821, 554792522662, 22521121103287, 925224047453512, 38381686035811912, 1605078750713101912, 67578873844051699048, 2861782692234129345448, 121795323921169907086504
Offset: 0
Cf.
A005809,
A001764,
A188676,
A104859,
A188678,
A188680,
A188681,
A188682,
A188683,
A188684,
A188685,
A188686,
A188687.
-
Table[Sum[Binomial[3k,k]^2,{k,0,n}],{n,0,20}]
Accumulate[Table[Binomial[3n,n]^2,{n,0,20}]] (* Harvey P. Dale, Sep 26 2019 *)
-
makelist(sum(binomial(3*k,k)^2,k,0,n),n,0,20);
A188683
Alternate partial sums of binomial(3n,n)^2/(2n+1).
Original entry on oeis.org
1, 2, 43, 965, 26260, 793559, 25715833, 875686727, 30942995146, 1125179561729, 41860674073996, 1586681151506804, 61081201435584796, 2382392690910289172, 93969463115644112428, 3742596382979058395348
Offset: 0
Cf. Alternate partial sums of binomial(3n,n)^2/(2n+1)^k:
A188680 (k=0), this sequence (k=1),
A188685 (k=2).
-
Table[Sum[Binomial[3k,k]^2(-1)^(n-k)/(2k+1),{k,0,n}],{n,0,20}]
-
makelist(sum(binomial(3*k,k)^2*(-1)^(n-k)/(2*k+1),k,0,n),n,0,20);
A188682
Partial sums of binomials bin(3n,n)^2/(2n+1).
Original entry on oeis.org
1, 4, 49, 1057, 28282, 848101, 27357493, 928760053, 32747441926, 1188869998801, 44174723634526, 1672716549215326, 64340599136306926, 2507814491482180894, 98859670298036582494, 3935425516392739090270, 158006444406545953115743
Offset: 0
Cf.
A005809,
A001764,
A188676,
A104859,
A188678,
A188679,
A188680,
A188681,
A188683,
A188684,
A188685,
A188686,
A188687.
-
Table[Sum[Binomial[3k,k]^2/(2k+1),{k,0,n}],{n,0,20}]
Accumulate[Table[Binomial[3n,n]^2/(2n+1),{n,0,20}]] (* Harvey P. Dale, Jul 10 2016 *)
-
makelist(sum(binomial(3*k,k)^2/(2*k+1),k,0,n),n,0,20);
A346628
G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x) * A(x)^3.
Original entry on oeis.org
1, 0, 2, 5, 22, 92, 415, 1927, 9198, 44804, 221880, 1113730, 5653747, 28975962, 149725355, 779178092, 4080167790, 21483383992, 113670233848, 604070682354, 3222823434608, 17255628041720, 92689459311470, 499359484166994, 2697571066055611, 14608820993453132
Offset: 0
-
nmax = 25; A[] = 0; Do[A[x] = 1/(1 + x) + x (1 + x) A[x]^3 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 25; CoefficientList[Series[Sum[(Binomial[3 k, k]/(2 k + 1)) x^k/(1 + x)^(k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[3 k, k]/(2 k + 1), {k, 0, n}], {n, 0, 25}]
A364592
G.f. satisfies A(x) = 1/(1-x) + x*(1-x)*A(x)^4.
Original entry on oeis.org
1, 2, 8, 49, 365, 3001, 26193, 238119, 2230151, 21368167, 208459419, 2063563791, 20675793627, 209277092776, 2136720896514, 21979879393677, 227582114799201, 2369983696546858, 24806423607475896, 260829829404493787, 2753744691645428399
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+k, 2*k)*binomial(4*k, k)/(3*k+1));
A346762
G.f. A(x) satisfies: A(x) = 1 / (1 - 2*x) + x * (1 - 2*x) * A(x)^3.
Original entry on oeis.org
1, 3, 11, 50, 271, 1655, 10900, 75388, 539295, 3954593, 29557251, 224308078, 1723659436, 13384272660, 104855628776, 827760536528, 6578127170319, 52581460222645, 422478996770305, 3410174204693310, 27640220748529799, 224866485110361767, 1835589569664256976
Offset: 0
-
nmax = 22; A[] = 0; Do[A[x] = 1/(1 - 2 x) + x (1 - 2 x) A[x]^3 + O[x]^(nmax + 1) // Normal,nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n, k] Binomial[3 k, k] 2^(n - k)/(2 k + 1), {k, 0, n}], {n, 0, 22}]
Table[2^n HypergeometricPFQ[{1/3, 2/3, -n}, {1, 3/2}, -27/8], {n, 0, 22}]
A378327
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n*k,k) / ((n-1)*k + 1).
Original entry on oeis.org
1, 2, 5, 25, 257, 4361, 104425, 3241316, 123865313, 5628753361, 296671566941, 17798975341467, 1197924420178381, 89394126594968755, 7326377073291002147, 654215578855903951141, 63225054646397348577601, 6575059243843086616460321, 732138834180570978286488133
Offset: 0
-
Table[Sum[Binomial[n, k] Binomial[n*k, k]/((n-1)*k + 1), {k, 0, n}], {n, 0, 20}]
A381828
Expansion of ( (1/x) * Series_Reversion( x * ((1-x) * (1-x+x^2))^2 ) )^(1/2).
Original entry on oeis.org
1, 2, 10, 65, 480, 3824, 32039, 278256, 2482578, 22617830, 209540672, 1968031520, 18696064179, 179332892186, 1734451272240, 16895744042472, 165621305486976, 1632518433458400, 16170959983623314, 160888256475481560, 1607061512154585046, 16110030923830784248
Offset: 0
Comments