cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A188687 Partial binomial sums of binomial(3n,n)/(2n+1) = A001764(n).

Original entry on oeis.org

1, 2, 6, 25, 126, 704, 4183, 25897, 165166, 1077520, 7156352, 48222354, 328859011, 2265428728, 15740837575, 110187356134, 776336572878, 5501042194580, 39177463572112, 280277949384146, 2013277273220064, 14514764553512488, 104993261648226446
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]Binomial[3k,k]/(2k+1),{k,0,n}],{n,0,22}]
  • Maxima
    makelist(sum(binomial(n,k)*binomial(3*k,k)/(2*k+1),k,0,n),n,0,20);

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*binomial(3k,k)/(2k+1).
G.f.: (2/sqrt(3x*(1-x)))*sin((1/3)*arcsin(3/2*sqrt(3*x/(1-x)))).
Recurrence: 2*n*(2*n+1)*a(n) = (39*n^2-35*n+8)*a(n-1) - 2*(n-1)*(33*n-32)*a(n-2) + 31*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 31^(n+3/2)/(3^4*2^(2*n+2)*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012
G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x * (1 - x) * A(x)^3. - Ilya Gutkovskiy, Jul 25 2021

A188678 Alternate partial sums of binomial(3*n,n)/(2*n+1).

Original entry on oeis.org

1, 0, 3, 9, 46, 227, 1201, 6551, 36712, 209963, 1220752, 7193888, 42873220, 257957352, 1564809168, 9559946496, 58768808463, 363261736872, 2256369305793, 14076552984507, 88163556913188, 554148894304557, 3494365949734563
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[3k,k](-1)^(n-k)/(2k+1),{k,0,n}],{n,0,20}]
  • Maxima
    makelist(sum(binomial(3*k,k)*(-1)^(n-k)/(2*k+1),k,0,n),n,0,20);

Formula

a(n) = Sum_{k=0..n} binomial(3*k,k)*(-1)^(n-k)/(2*k+1).
Recurrence: 2*(2*n^2+9*n+10)*a(n+2)-(23*n^2+63*n+40)*a(n+1)-3*(9*n^2+27*n+20)*a(n)=0.
G.f.: 2*sin((1/3)*arcsin(3*sqrt(3*x)/2))/((1+x)*sqrt(3*x)).
a(n) ~ 3^(3*n+3+1/2)/(31*sqrt(Pi)*n^(3/2)*2^(2*n+2)). - Vaclav Kotesovec, Aug 06 2013
G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x)^2 * A(x)^3. - Ilya Gutkovskiy, Jul 25 2021

A188680 Alternate partial sums of binomial(3n,n)^2.

Original entry on oeis.org

1, 8, 217, 6839, 238186, 8779823, 335842273, 13185196127, 527732395714, 21438596184911, 881264330165314, 36575197658193086, 1530121867019096914, 64443673226319500222, 2729760145163758146178, 116203781083772019594878
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Crossrefs

Cf. Alternate partial sums of binomial(k*n,n)^2: A228002 (k=2), this sequence (k=3).

Programs

  • Mathematica
    Table[Sum[Binomial[3k,k]^2(-1)^(n-k),{k,0,n}],{n,0,20}]
  • Maxima
    makelist(sum(binomial(3*k,k)^2*(-1)^(n-k),k,0,n),n,0,20);
    
  • PARI
    a(n)=my(t=1); sum(k=1,n, t*=(27*k^2 - 27*k + 6)/(4*k^2 - 2*k); (-1)^(n-k)*t^2)+(-1)^n \\ Charles R Greathouse IV, Nov 02 2016

Formula

a(n) = sum(C(3k,k)^2*(-1)^(n-k), k=0..n).
Recurrence: 4*(2*n^2+7*n+6)^2 * a(n+2) -(713*n^4+4262*n^3+9509*n^2 +9384*n+3456) * a(n+1) -9*(9*n^2+27*n+20)^2 * a(n) = 0.
G.f.: (1+x)^(-1)*F(1/3,1/3,2/3,2/3;1/2,1/2,1;729*x/16), where F(a1,a2,a3,a4;b1,b2,b3;z) is a hypergeometric series.
a(n) ~ 3^(6*n+7)/(745*Pi*n*2^(4*n+2)). - Vaclav Kotesovec, Aug 06 2013

A188676 Alternate partial sums of the binomial coefficients binomial(3*n,n).

Original entry on oeis.org

1, 2, 13, 71, 424, 2579, 15985, 100295, 635176, 4051649, 25993366, 167543354, 1084134346, 7038291098, 45821937982, 299045487602, 1955803426045, 12815265660680, 84111082917925, 552872886403775, 3638971619401720
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[3k, k](-1)^(n-k), {k, 0, n}], {n, 0, 20}]
  • Maxima
    makelist(sum(binomial(3*k,k)*(-1)^(n-k),k,0,n),n,0,20);

Formula

a(n) = sum(k=0..n, (-1)^(n-k)*binomial(3*k,k) ).
Recurrence: 2*(n+2)*(2n+3)*a(n+2)-(23*n^2+67*n+48)*a(n+1)-3*(3*n+4)*(3n+5)*a(n)=0.
G.f.: 2*cos((1/3)*arcsin(3*sqrt(3*x)/2))/((1+x)*sqrt(4-27*x)).
a(n) ~ 3^(3*n+7/2)/(62*4^n*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 20 2012

A188679 Partial sums of binomial(3n,n)^2.

Original entry on oeis.org

1, 10, 235, 7291, 252316, 9270325, 353892421, 13874930821, 554792522662, 22521121103287, 925224047453512, 38381686035811912, 1605078750713101912, 67578873844051699048, 2861782692234129345448, 121795323921169907086504
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[3k,k]^2,{k,0,n}],{n,0,20}]
    Accumulate[Table[Binomial[3n,n]^2,{n,0,20}]] (* Harvey P. Dale, Sep 26 2019 *)
  • Maxima
    makelist(sum(binomial(3*k,k)^2,k,0,n),n,0,20);

Formula

a(n) = sum(C(3k,k)^2, k=0..n).
Recurrence: 4*(2*n^2+7*n+6)^2 * a(n+2) -(745*n^4+4486*n^3+10093*n^2 +10056*n+3744) * a(n+1) +9*(9*n^2+27*n+20)^2 * a(n) = 0.
G.f.: (1-x)^(-1)*F(1/3,1/3,2/3,2/3;1/2,1/2,1;729*x/16), where F(a1,a2,a3,a4;b1,b2,b3;z) is a hypergeometric series.
a(n) ~ 3^(6*n+7)/(713*Pi*n*2^(4*n+2)). - Vaclav Kotesovec, Aug 06 2013

A188683 Alternate partial sums of binomial(3n,n)^2/(2n+1).

Original entry on oeis.org

1, 2, 43, 965, 26260, 793559, 25715833, 875686727, 30942995146, 1125179561729, 41860674073996, 1586681151506804, 61081201435584796, 2382392690910289172, 93969463115644112428, 3742596382979058395348
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Crossrefs

Cf. Alternate partial sums of binomial(3n,n)^2/(2n+1)^k: A188680 (k=0), this sequence (k=1), A188685 (k=2).
Cf. Partial sums of binomial(3n,n)^2/(2n+1)^k: A188679 (k=0), A188682 (k=1), A188684 (k=2).

Programs

  • Mathematica
    Table[Sum[Binomial[3k,k]^2(-1)^(n-k)/(2k+1),{k,0,n}],{n,0,20}]
  • Maxima
    makelist(sum(binomial(3*k,k)^2*(-1)^(n-k)/(2*k+1),k,0,n),n,0,20);

Formula

a(n) = sum(binomial(3*k,k)^2*(-1)^(n-k)/(2*k+1), k=0..n).
Recurrence: 4*(n+2)^2*(4*n^2+16*n+15) * a(n+2) -(713*n^4+4246*n^3 +9421*n^2 +9224*n+3360) * a(n+1) -9*(9*n^2+27*n+20)^2 * a(n) = 0.
a(n) ~ 3^(6*n+7)/(745*Pi*n^2*2^(4*n+3)). - Vaclav Kotesovec, Aug 06 2013

A188685 Partial alternating sums of binomial(3n,n)^2/(2n+1)^2.

Original entry on oeis.org

1, 0, 9, 135, 2890, 71639, 1967545, 58125959, 1813561210, 59034994415, 1987910416810, 68818255912790, 2437897047570874, 88061136002276310, 3234416650430634090, 120525771933269446806, 4548292982313797644875
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Crossrefs

Cf. Alternate partial sums of binomial(3n,n)^2/(2n+1)^k: A188680 (k=0), A188683 (k=1), this sequence (k=2).

Programs

  • Magma
    [ &+[(-1)^(n-k)*Binomial(3*k, k)^2/(2*k+1)^2: k in [0..n]]: n in [0..16]];  // Bruno Berselli, Apr 11 2011
  • Maple
    A001764 := proc(n) binomial(3*n,n)/(2*n+1) ; end proc:
    A188685 := proc(n) add( (-1)^(n-k)*A001764(k)^2,k=0..n) ; end proc: # R. J. Mathar, Apr 11 2011
  • Mathematica
    Table[Sum[Binomial[3k,k]^2(-1)^(n-k)/(2k+1)^2,{k,0,n}],{n,0,20}]
  • Maxima
    makelist(sum(binomial(3*k,k)^2*(-1)^(n-k)/(2*k+1)^2,k,0,n),n,0,20);
    

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*A001764(k)^2.
4*(2*n^2 + 9*n + 10)^2*a(n+2) - (713*n^4 + 4230*n^3 + 9317*n^2 + 9000*n + 3200)*a(n+1) - 9*(9*n^2 + 27*n + 20)^2*a(n) = 0.
a(n) ~ 3^(6*n+7)/(745*Pi*n^3*2^(4*n+4)). - Vaclav Kotesovec, Aug 06 2013

A188682 Partial sums of binomials bin(3n,n)^2/(2n+1).

Original entry on oeis.org

1, 4, 49, 1057, 28282, 848101, 27357493, 928760053, 32747441926, 1188869998801, 44174723634526, 1672716549215326, 64340599136306926, 2507814491482180894, 98859670298036582494, 3935425516392739090270, 158006444406545953115743
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[3k,k]^2/(2k+1),{k,0,n}],{n,0,20}]
    Accumulate[Table[Binomial[3n,n]^2/(2n+1),{n,0,20}]] (* Harvey P. Dale, Jul 10 2016 *)
  • Maxima
    makelist(sum(binomial(3*k,k)^2/(2*k+1),k,0,n),n,0,20);

Formula

a(n) = sum(bin(3*k,k)^2/(2*k+1),k=0..n).
Recurrence: 4*(n+2)^2*(4*n^2+16*n+15) * a(n+2) -(745*n^4+4502*n^3+10181*n^2+10216*n+3840) * a(n+1) +9*(9*n^2+27*n+20)^2 *a(n) = 0.
a(n) ~ 3^(6*n+7)/(713*Pi*n^2*2^(4*n+3)). - Vaclav Kotesovec, Aug 06 2013

A188684 Partial sums of binomials binomial(3n,n)^2/(2n+1)^2.

Original entry on oeis.org

1, 2, 11, 155, 3180, 77709, 2116893, 62210397, 1933897566, 62782453191, 2109727864416, 72915894194016, 2579631197677680, 93078664247524864, 3415556450680435264, 127175745034380516160, 4795994499281447607841
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Crossrefs

Cf. Partial sums of binomial(3n,n)^2/(2n+1)^k: A188679 (k=0), A188682 (k=1), this sequence (k=2).
Cf. Alternate partial sums of binomial(3n,n)^2/(2n+1)^k: A188680 (k=0), A188683 (k=1), A188685 (k=2).

Programs

  • Magma
    [&+[Binomial(3*k,k)^2/(2*k+1)^2: k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Nov 04 2016
  • Mathematica
    Table[Sum[Binomial[3k,k]^2/(2k+1)^2,{k,0,n}],{n,0,20}]
  • Maxima
    makelist(sum(binomial(3*k,k)^2/(2*k+1)^2,k,0,n),n,0,20);
    

Formula

a(n) = sum( A001764(k)^2 , k=0..n).
4*(2*n^2+9*n+10)^2*a(n+2) - (745*n^4+4518*n^3+10285*n^2+10440*n+4000)*a(n+1) + 9*(9*n^2+27*n+20)^2*a(n) = 0.
a(n) = 4F3(1/3,1/3,2/3,2/3; 1,3/2,3/2; 729/16) - Gamma^2(3n+4) *5F4(1,n+4/3,n+4/3,n+5/3,n+5/3; n+2,n+2,n+5/2,n+5/2; 729/16)/ (Gamma(n+2)*Gamma(2n+3))^2, with pFq() generalized hypergeometric functions. - Charles R Greathouse IV, Apr 14 2011
a(n) ~ 3^(6*n+7)/(713*Pi*n^3*2^(4*n+4)). - Vaclav Kotesovec, Aug 06 2013

A371395 Triangle read by rows: T(n, k) = binomial(n + k, k) * binomial(2*n - k, n - k) / (n + 1).

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 5, 10, 10, 5, 14, 35, 45, 35, 14, 42, 126, 196, 196, 126, 42, 132, 462, 840, 1008, 840, 462, 132, 429, 1716, 3564, 4950, 4950, 3564, 1716, 429, 1430, 6435, 15015, 23595, 27225, 23595, 15015, 6435, 1430
Offset: 0

Views

Author

F. Chapoton, Mar 21 2024

Keywords

Comments

The terms can be seen as graded dimensions of a non-symmetric operad. The Koszul dual operad has Hilbert series x*(1 + x)*(1 + tx). So the current table has as Hilbert series the reverse of x*(1-x)*(1-t*x) w.r.t to x (see Sage below).
The triangle is symmetric under the exchange of k with n - k.

Examples

			Triangle begins:
  [0] [ 1],
  [1] [ 1,   1],
  [2] [ 2,   3,   2],
  [3] [ 5,  10,  10,   5],
  [4] [14,  35,  45,  35,  14],
  [5] [42, 126, 196, 196, 126, 42].
		

Crossrefs

Column 0 and main diagonal are A000108.
Column 1 and subdiagonal are A001700.
Row sums are A006013.
The even bisection of the alternating row sums is A001764.
The central terms are A188681.

Programs

  • Maple
    T := (n, k) -> binomial(n + k, k)*binomial(2*n - k, n)/(n + 1):
    seq(print(seq(T(n, k), k = 0..n)), n = 0..7);  # Peter Luschny, Mar 21 2024
  • Mathematica
    T[n_, k_] := (Hypergeometric2F1[-n, -k, 1, 1] Hypergeometric2F1[-n, k - n, 1, 1]) /(n + 1); Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten
    (* Peter Luschny, Mar 21 2024 *)
  • SageMath
    def Trow(n):
        return [binomial(n+k, k) * binomial(2*n-k, n-k) / (n+1) for k in range(n+1)]
    
  • SageMath
    # As the reverse of x*(1-x)*(1-t*x) w.r.t variable x.
    t = polygen(QQ, 't')
    x = LazyPowerSeriesRing(t.parent(), 'x').0
    gf = x*(1-x)*(1-t*x)
    coeffs = gf.revert() / x
    for n in range(6):
        print(coeffs[n].list())

Formula

From Peter Luschny, Mar 21 2024: (Start)
T(n, k) = hypergeom([-n, -k], [1], 1)*hypergeom([-n, k - n], [1], 1)/(n + 1).
2^n*Sum_{k=0..n} T(n, k)*(1/2)^k = A085614(n + 1).
2^n*Sum_{k=0..n} T(n, k)*(-1/2)^k = A250886(n + 1). (End)
Showing 1-10 of 10 results.