A188687
Partial binomial sums of binomial(3n,n)/(2n+1) = A001764(n).
Original entry on oeis.org
1, 2, 6, 25, 126, 704, 4183, 25897, 165166, 1077520, 7156352, 48222354, 328859011, 2265428728, 15740837575, 110187356134, 776336572878, 5501042194580, 39177463572112, 280277949384146, 2013277273220064, 14514764553512488, 104993261648226446
Offset: 0
Cf.
A005809,
A001764,
A188675,
A188676,
A104859,
A188678,
A188679,
A188680,
A188681,
A188682,
A188683,
A188684,
A188685,
A188686.
-
Table[Sum[Binomial[n,k]Binomial[3k,k]/(2k+1),{k,0,n}],{n,0,22}]
-
makelist(sum(binomial(n,k)*binomial(3*k,k)/(2*k+1),k,0,n),n,0,20);
A188678
Alternate partial sums of binomial(3*n,n)/(2*n+1).
Original entry on oeis.org
1, 0, 3, 9, 46, 227, 1201, 6551, 36712, 209963, 1220752, 7193888, 42873220, 257957352, 1564809168, 9559946496, 58768808463, 363261736872, 2256369305793, 14076552984507, 88163556913188, 554148894304557, 3494365949734563
Offset: 0
Cf.
A005809,
A001764,
A188676,
A104859,
A188679,
A188680,
A188681,
A188682,
A188683,
A188684,
A188685,
A188686,
A188687.
-
Table[Sum[Binomial[3k,k](-1)^(n-k)/(2k+1),{k,0,n}],{n,0,20}]
-
makelist(sum(binomial(3*k,k)*(-1)^(n-k)/(2*k+1),k,0,n),n,0,20);
A188680
Alternate partial sums of binomial(3n,n)^2.
Original entry on oeis.org
1, 8, 217, 6839, 238186, 8779823, 335842273, 13185196127, 527732395714, 21438596184911, 881264330165314, 36575197658193086, 1530121867019096914, 64443673226319500222, 2729760145163758146178, 116203781083772019594878
Offset: 0
Cf.
A005809,
A001764,
A188676,
A104859,
A188678,
A188679,
A188681,
A188682,
A188683,
A188684,
A188685,
A188686,
A188687.
Cf. Alternate partial sums of binomial(k*n,n)^2:
A228002 (k=2), this sequence (k=3).
-
Table[Sum[Binomial[3k,k]^2(-1)^(n-k),{k,0,n}],{n,0,20}]
-
makelist(sum(binomial(3*k,k)^2*(-1)^(n-k),k,0,n),n,0,20);
-
a(n)=my(t=1); sum(k=1,n, t*=(27*k^2 - 27*k + 6)/(4*k^2 - 2*k); (-1)^(n-k)*t^2)+(-1)^n \\ Charles R Greathouse IV, Nov 02 2016
A188676
Alternate partial sums of the binomial coefficients binomial(3*n,n).
Original entry on oeis.org
1, 2, 13, 71, 424, 2579, 15985, 100295, 635176, 4051649, 25993366, 167543354, 1084134346, 7038291098, 45821937982, 299045487602, 1955803426045, 12815265660680, 84111082917925, 552872886403775, 3638971619401720
Offset: 0
Cf.
A005809,
A001764,
A104859,
A188678,
A188679,
A188680,
A188681,
A188682,
A188683,
A188684,
A188685,
A188686,
A188687.
-
Table[Sum[Binomial[3k, k](-1)^(n-k), {k, 0, n}], {n, 0, 20}]
-
makelist(sum(binomial(3*k,k)*(-1)^(n-k),k,0,n),n,0,20);
A188679
Partial sums of binomial(3n,n)^2.
Original entry on oeis.org
1, 10, 235, 7291, 252316, 9270325, 353892421, 13874930821, 554792522662, 22521121103287, 925224047453512, 38381686035811912, 1605078750713101912, 67578873844051699048, 2861782692234129345448, 121795323921169907086504
Offset: 0
Cf.
A005809,
A001764,
A188676,
A104859,
A188678,
A188680,
A188681,
A188682,
A188683,
A188684,
A188685,
A188686,
A188687.
-
Table[Sum[Binomial[3k,k]^2,{k,0,n}],{n,0,20}]
Accumulate[Table[Binomial[3n,n]^2,{n,0,20}]] (* Harvey P. Dale, Sep 26 2019 *)
-
makelist(sum(binomial(3*k,k)^2,k,0,n),n,0,20);
A188683
Alternate partial sums of binomial(3n,n)^2/(2n+1).
Original entry on oeis.org
1, 2, 43, 965, 26260, 793559, 25715833, 875686727, 30942995146, 1125179561729, 41860674073996, 1586681151506804, 61081201435584796, 2382392690910289172, 93969463115644112428, 3742596382979058395348
Offset: 0
Cf. Alternate partial sums of binomial(3n,n)^2/(2n+1)^k:
A188680 (k=0), this sequence (k=1),
A188685 (k=2).
-
Table[Sum[Binomial[3k,k]^2(-1)^(n-k)/(2k+1),{k,0,n}],{n,0,20}]
-
makelist(sum(binomial(3*k,k)^2*(-1)^(n-k)/(2*k+1),k,0,n),n,0,20);
A188685
Partial alternating sums of binomial(3n,n)^2/(2n+1)^2.
Original entry on oeis.org
1, 0, 9, 135, 2890, 71639, 1967545, 58125959, 1813561210, 59034994415, 1987910416810, 68818255912790, 2437897047570874, 88061136002276310, 3234416650430634090, 120525771933269446806, 4548292982313797644875
Offset: 0
Cf. Alternate partial sums of binomial(3n,n)^2/(2n+1)^k:
A188680 (k=0),
A188683 (k=1), this sequence (k=2).
-
[ &+[(-1)^(n-k)*Binomial(3*k, k)^2/(2*k+1)^2: k in [0..n]]: n in [0..16]]; // Bruno Berselli, Apr 11 2011
-
A001764 := proc(n) binomial(3*n,n)/(2*n+1) ; end proc:
A188685 := proc(n) add( (-1)^(n-k)*A001764(k)^2,k=0..n) ; end proc: # R. J. Mathar, Apr 11 2011
-
Table[Sum[Binomial[3k,k]^2(-1)^(n-k)/(2k+1)^2,{k,0,n}],{n,0,20}]
-
makelist(sum(binomial(3*k,k)^2*(-1)^(n-k)/(2*k+1)^2,k,0,n),n,0,20);
A188682
Partial sums of binomials bin(3n,n)^2/(2n+1).
Original entry on oeis.org
1, 4, 49, 1057, 28282, 848101, 27357493, 928760053, 32747441926, 1188869998801, 44174723634526, 1672716549215326, 64340599136306926, 2507814491482180894, 98859670298036582494, 3935425516392739090270, 158006444406545953115743
Offset: 0
Cf.
A005809,
A001764,
A188676,
A104859,
A188678,
A188679,
A188680,
A188681,
A188683,
A188684,
A188685,
A188686,
A188687.
-
Table[Sum[Binomial[3k,k]^2/(2k+1),{k,0,n}],{n,0,20}]
Accumulate[Table[Binomial[3n,n]^2/(2n+1),{n,0,20}]] (* Harvey P. Dale, Jul 10 2016 *)
-
makelist(sum(binomial(3*k,k)^2/(2*k+1),k,0,n),n,0,20);
A188684
Partial sums of binomials binomial(3n,n)^2/(2n+1)^2.
Original entry on oeis.org
1, 2, 11, 155, 3180, 77709, 2116893, 62210397, 1933897566, 62782453191, 2109727864416, 72915894194016, 2579631197677680, 93078664247524864, 3415556450680435264, 127175745034380516160, 4795994499281447607841
Offset: 0
Cf. Partial sums of binomial(3n,n)^2/(2n+1)^k:
A188679 (k=0),
A188682 (k=1), this sequence (k=2).
-
[&+[Binomial(3*k,k)^2/(2*k+1)^2: k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Nov 04 2016
-
Table[Sum[Binomial[3k,k]^2/(2k+1)^2,{k,0,n}],{n,0,20}]
-
makelist(sum(binomial(3*k,k)^2/(2*k+1)^2,k,0,n),n,0,20);
A371395
Triangle read by rows: T(n, k) = binomial(n + k, k) * binomial(2*n - k, n - k) / (n + 1).
Original entry on oeis.org
1, 1, 1, 2, 3, 2, 5, 10, 10, 5, 14, 35, 45, 35, 14, 42, 126, 196, 196, 126, 42, 132, 462, 840, 1008, 840, 462, 132, 429, 1716, 3564, 4950, 4950, 3564, 1716, 429, 1430, 6435, 15015, 23595, 27225, 23595, 15015, 6435, 1430
Offset: 0
Triangle begins:
[0] [ 1],
[1] [ 1, 1],
[2] [ 2, 3, 2],
[3] [ 5, 10, 10, 5],
[4] [14, 35, 45, 35, 14],
[5] [42, 126, 196, 196, 126, 42].
Column 0 and main diagonal are
A000108.
Column 1 and subdiagonal are
A001700.
The even bisection of the alternating row sums is
A001764.
-
T := (n, k) -> binomial(n + k, k)*binomial(2*n - k, n)/(n + 1):
seq(print(seq(T(n, k), k = 0..n)), n = 0..7); # Peter Luschny, Mar 21 2024
-
T[n_, k_] := (Hypergeometric2F1[-n, -k, 1, 1] Hypergeometric2F1[-n, k - n, 1, 1]) /(n + 1); Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten
(* Peter Luschny, Mar 21 2024 *)
-
def Trow(n):
return [binomial(n+k, k) * binomial(2*n-k, n-k) / (n+1) for k in range(n+1)]
-
# As the reverse of x*(1-x)*(1-t*x) w.r.t variable x.
t = polygen(QQ, 't')
x = LazyPowerSeriesRing(t.parent(), 'x').0
gf = x*(1-x)*(1-t*x)
coeffs = gf.revert() / x
for n in range(6):
print(coeffs[n].list())
Showing 1-10 of 10 results.
Comments