cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A381867 G.f. A(x) satisfies A(x) = C(x*A(x)) / (1 - x)^2, where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 3, 10, 44, 239, 1464, 9610, 65946, 466951, 3385259, 24999475, 187385168, 1421901090, 10901237530, 84312106160, 657031204068, 5153954345309, 40663760712441, 322478148002872, 2569086552458460, 20551321340065924, 165009872444132477, 1329352163579556971, 10742386009423170696
Offset: 0

Views

Author

Seiichi Manyama, Mar 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(3*k+1, k)*binomial(n+k+1, n-k)/(3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(3*k+1,k) * binomial(n+k+1,n-k)/(3*k+1).
a(n) = (1 + n)*hypergeom([1/3, 2/3, -n, 2+n], [1, 3/2, 3/2], -3^3/2^4). - Stefano Spezia, Mar 09 2025

A254747 a(n) = (1 + Sum_{j=0..n} (C(n,j)*C(3*j-1,j))) / 2.

Original entry on oeis.org

1, 2, 8, 47, 312, 2162, 15311, 109965, 797824, 5833298, 42910998, 317224800, 2354712927, 17538747124, 131017428431, 981194304302, 7364370502896, 55380344444150, 417176211054422, 3147365470080480, 23777750075552262
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 07 2015

Keywords

Crossrefs

Programs

  • Maple
    a := n -> (hypergeom([1/3, 2/3, -n], [1/2, 1], -27/4) +2 ) / 3:
    seq(simplify(a(n)), n=0..20); # Peter Luschny, Feb 07 2015
  • Mathematica
    FullSimplify[CoefficientList[Series[1 + x*D[Log[(2*Sin[(1/3)* ArcSin[(3/2)*Sqrt[3]* Sqrt[x/(1 - x)]]])/ (Sqrt[3]*Sqrt[(1 - x)* x])], x], {x, 0, 20}], x]] (* Vaclav Kotesovec, Feb 07 2015 *)
    Table[(1 + Sum[Binomial[n, j]*Binomial[3*j-1, j], {j, 0, n}])/2, {n,0,20}] (* Vaclav Kotesovec, Feb 07 2015 after Vladimir Kruchinin *)
  • Maxima
    a(n):=(1+sum(binomial(n,j)*binomial(3*j-1,j),j,0,n))/2;
    
  • PARI
    for(n=0,25, print1((1 + sum(k=0,n, binomial(n,k)*binomial(3*k-1,k)))/2, ", ")) \\ G. C. Greubel, Jun 03 2017

Formula

G.f.: x*G'(x)/G(x), where G(x) = x*(2/sqrt(3*x*(1-x)))*sin((1/3)*asin(3/2*sqrt(3*x/(1-x)))).
a(n) = (hypergeom([1/3,2/3,-n],[1/2,1],-27/4)+2)/3. - Peter Luschny, Feb 07 2015
From Vaclav Kotesovec, Feb 07 2015: (Start)
Recurrence: 2*n*(2*n-1)*a(n) = (43*n^2 - 53*n + 18)*a(n-1) - 3*(35*n^2 - 85*n + 54)*a(n-2) + (n-2)*(97*n - 165)*a(n-3) - 31*(n-3)*(n-2)*a(n-4).
a(n) ~ 31^(n+1/2) / (9 * sqrt(Pi*n) * 2^(2*n+1)).
(End)

A346763 G.f. A(x) satisfies: A(x) = 1 / (1 - 3*x) + x * (1 - 3*x) * A(x)^3.

Original entry on oeis.org

1, 4, 18, 93, 550, 3636, 26079, 197931, 1562382, 12685116, 105187512, 886700898, 7574331987, 65413265014, 570155069547, 5008957733472, 44306834969838, 394269180748272, 3527034255411864, 31700659283908242, 286124960854479888, 2592334353741781752, 23567790327842864046
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 02 2021

Keywords

Comments

Third binomial transform of A001764.

Crossrefs

Programs

  • Mathematica
    nmax = 22; A[] = 0; Do[A[x] = 1/(1 - 3 x) + x (1 - 3 x) A[x]^3 + O[x]^(nmax + 1) // Normal,nmax + 1]; CoefficientList[A[x], x]
    Table[Sum[Binomial[n, k] Binomial[3 k, k] 3^(n - k)/(2 k + 1), {k, 0, n}], {n, 0, 22}]
    Table[3^n HypergeometricPFQ[{1/3, 2/3, -n}, {1, 3/2}, -9/4], {n, 0, 22}]

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * binomial(3*k,k) * 3^(n-k) / (2*k + 1).
a(n) ~ 3^(n - 5/2) * 13^(n + 3/2) / (sqrt(Pi) * n^(3/2) * 2^(2*(n+1))). - Vaclav Kotesovec, Nov 26 2021

A381829 G.f. A(x) satisfies A(x) = C(x*A(x)) / (1 - x*A(x)^3), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 12, 97, 905, 9187, 98578, 1099980, 12636101, 148449436, 1775331503, 21541303494, 264533752068, 3281596216087, 41062196808517, 517655936768189, 6568539787903369, 83827401412072474, 1075254139150601581, 13855040994605807348, 179256835556387995412, 2327788724156294034612
Offset: 0

Views

Author

Seiichi Manyama, Mar 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(3*n+1, k)*binomial(4*n-3*k, n-k))/(3*n+1);

Formula

a(n) = (1/(3*n+1)) * Sum_{k=0..n} binomial(3*n+1,k) * binomial(4*n-3*k,n-k).

A381832 G.f. A(x) satisfies A(x) = C(x*A(x)^3) / (1 - x), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 10, 81, 796, 8616, 98973, 1184324, 14602486, 184219731, 2366543116, 30851212416, 407106050261, 5427274340091, 72986372975716, 988937692146346, 13487903251385562, 185022817888443780, 2551096865411701371, 35335463473311506321, 491444773227779518956, 6860346682881319595632
Offset: 0

Views

Author

Seiichi Manyama, Mar 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(5*k+1, k)*binomial(n+2*k, n-k)/(5*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(5*k+1,k) * binomial(n+2*k,n-k)/(5*k+1).
Previous Showing 21-25 of 25 results.