cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 59 results. Next

A374701 Numbers k such that the leaders of weakly decreasing runs in the k-th composition in standard order (A066099) are distinct.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Gus Wiseman, Jul 24 2024

Keywords

Comments

First differs from A335469 in having 150, which corresponds to the composition (3,2,1,2).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The maximal weakly decreasing subsequences of the 1257th composition in standard order are ((3,1,1),(2),(3,1)), with leaders (3,2,3), so 1257 is not in the sequence.
		

Crossrefs

Positions of distinct (strict) rows in A374740, opposite A374629.
Compositions of this type are counted by A374743.
For identical leaders we have A374744, counted by A374742.
Other types of runs and their counts: A374249 (A274174), A374638 (A374518), A374698 (A374687), A374767 (A374761), A374768 (A374632).
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Adjacent equal pairs are counted by A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@First/@Split[stc[#],GreaterEqual]&] (* Gus Wiseman, Jul 24 2024 *)

A374760 Number of integer compositions of n whose leaders of strictly decreasing runs are identical.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 11, 15, 21, 28, 38, 52, 70, 95, 129, 173, 234, 318, 428, 579, 784, 1059, 1433, 1942, 2630, 3564, 4835, 6559, 8902, 12094, 16432, 22340, 30392, 41356, 56304, 76692, 104499, 142448, 194264, 265015, 361664, 493749, 674278, 921113, 1258717
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.

Examples

			The composition (3,3,2,1,3,2,1) has strictly decreasing runs ((3),(3,2,1),(3,2,1)), with leaders (3,3,3), so is counted under a(15).
The a(0) = 1 through a(8) = 15 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
           (11)  (21)   (22)    (32)     (33)      (43)       (44)
                 (111)  (31)    (41)     (42)      (52)       (53)
                        (1111)  (212)    (51)      (61)       (62)
                                (221)    (222)     (313)      (71)
                                (11111)  (321)     (331)      (323)
                                         (2121)    (421)      (332)
                                         (111111)  (2122)     (431)
                                                   (2212)     (521)
                                                   (2221)     (2222)
                                                   (1111111)  (3131)
                                                              (21212)
                                                              (21221)
                                                              (22121)
                                                              (11111111)
		

Crossrefs

For partitions instead of compositions we have A034296.
The weak version is A374742, ranks A374744.
The opposite version is A374686, ranks A374685.
The weak opposite version is A374631, ranks A374633.
Ranked by A374759.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have A000005 for n > 0, ranks A272919.
- For leaders of anti-runs we have A374517, ranks A374519.
Other types of run-leaders (instead of identical):
- For distinct leaders we have A374761, ranks A374767.
- For strictly increasing leaders we have A374762.
- For strictly decreasing leaders we have A374763.
- For weakly increasing leaders we have A374764.
- For weakly decreasing leaders we have A374765.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A373949 counts compositions by run-compressed sum, opposite A373951.

Programs

  • Mathematica
    Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n],SameQ@@First/@Split[#,Greater]&]],{n,0,15}]
  • PARI
    seq(n) = Vec(1 + sum(k=1, n, 1/(1 - x^k*prod(j=1, min(n-k,k-1), 1 + x^j, 1 + O(x^(n-k+1))))-1)) \\ Andrew Howroyd, Jul 31 2024

Formula

G.f.: 1 + Sum_{k>=1} -1 + 1/(1 - x^k*Product_{j=1..k-1} (1 + x^j)). - Andrew Howroyd, Jul 31 2024

Extensions

a(24) onwards from Andrew Howroyd, Jul 31 2024

A375123 Weakly increasing run-leader transformation for standard compositions.

Original entry on oeis.org

0, 1, 2, 1, 4, 5, 1, 1, 8, 9, 2, 5, 1, 3, 1, 1, 16, 17, 18, 9, 2, 5, 5, 5, 1, 3, 1, 3, 1, 3, 1, 1, 32, 33, 34, 17, 4, 37, 9, 9, 2, 5, 2, 5, 5, 11, 5, 5, 1, 3, 6, 3, 1, 3, 3, 3, 1, 3, 1, 3, 1, 3, 1, 1, 64, 65, 66, 33, 68, 69, 17, 17, 4, 9, 18, 37, 9, 19, 9, 9
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The a(n)-th composition in standard order lists the leaders of weakly increasing runs of the n-th composition in standard order.
The leaders of weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 813th composition in standard order is (1,3,2,1,2,1), with weakly increasing runs ((1,3),(2),(1,2),(1)), with leaders (1,2,1,1). This is the 27th composition in standard order, so a(813) = 27.
		

Crossrefs

Positions of elements of A233564 are A374768, counted by A374632.
Positions of elements of A272919 are A374633, counted by A374631.
Ranks of rows of A374629.
The opposite version is A375124.
The strict version is A375125.
The strict opposite version is A375126.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Leader is A065120.
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627, sum A070939.
- Run-sum transformation is A353847.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[First/@Split[stc[n],LessEqual]],{n,0,100}]

Formula

A000120(a(n)) = A124766(n).
A070939(a(n)) = A374630(n) for n > 0.
A065120(a(n)) = A065120(n).

A294617 Number of ways to choose a set partition of a strict integer partition of n.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 10, 12, 17, 24, 44, 51, 76, 98, 138, 217, 272, 366, 493, 654, 848, 1284, 1560, 2115, 2718, 3610, 4550, 6024, 8230, 10296, 13354, 17144, 21926, 27903, 35556, 44644, 59959, 73456, 94109, 117735, 150078, 185800, 235719, 290818, 365334, 467923
Offset: 0

Views

Author

Gus Wiseman, Nov 05 2017

Keywords

Comments

From Gus Wiseman, Sep 17 2024: (Start)
Also the number of strict integer compositions of n whose leaders, obtained by splitting into maximal increasing subsequences and taking the first term of each, are decreasing. For example, the strict composition (3,6,2,1,4) has maximal increasing subsequences ((3,6),(2),(1,4)), with leaders (3,2,1), so is counted under a(16). The a(0) = 1 through a(7) = 12 compositions are:
() (1) (2) (3) (4) (5) (6) (7)
(1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (3,1) (2,3) (2,4) (2,5)
(3,2) (4,2) (3,4)
(4,1) (5,1) (4,3)
(1,2,3) (5,2)
(2,1,3) (6,1)
(2,3,1) (1,2,4)
(3,1,2) (2,1,4)
(3,2,1) (2,4,1)
(4,1,2)
(4,2,1)
(End)

Examples

			The a(6) = 10 set partitions are: {{6}}, {{1},{5}}, {{5,1}}, {{2},{4}}, {{4,2}}, {{1},{2},{3}}, {{1},{3,2}}, {{2,1},{3}}, {{3,1},{2}}, {{3,2,1}}.
		

Crossrefs

Row sums of A330460 and of A330759.
This is a strict case of A374689, weak version A189076.
A011782 counts compositions, strict A032020.
A238130, A238279, A333755 count compositions by number of runs.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(n=0, combinat[bell](t), b(n, i-1, t)+
          `if`(i>n, 0, b(n-i, min(n-i, i-1), t+1))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 07 2017
  • Mathematica
    Table[Total[BellB[Length[#]]&/@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,25}]
    (* Second program: *)
    b[n_, i_, t_] := b[n, i, t] = If[n > i (i + 1)/2, 0, If[n == 0, BellB[t], b[n, i - 1, t] + If[i > n, 0, b[n - i, Min[n - i, i - 1], t + 1]]]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 50] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

Formula

A279375(n) <= a(n) <= A279790(n).
G.f.: Sum_{k>=0} Bell(k) * x^(k*(k + 1)/2) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Jan 28 2020

A374706 Sum of minima of the maximal strictly increasing runs in the weakly increasing prime indices of n.

Original entry on oeis.org

0, 1, 2, 2, 3, 1, 4, 3, 4, 1, 5, 2, 6, 1, 2, 4, 7, 3, 8, 2, 2, 1, 9, 3, 6, 1, 6, 2, 10, 1, 11, 5, 2, 1, 3, 4, 12, 1, 2, 3, 13, 1, 14, 2, 4, 1, 15, 4, 8, 4, 2, 2, 16, 5, 3, 3, 2, 1, 17, 2, 18, 1, 4, 6, 3, 1, 19, 2, 2, 1, 20, 5, 21, 1, 5, 2, 4, 1, 22, 4, 8, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 540 are {1,1,2,2,2,3}, with strictly increasing runs ({1},{1,2},{2},{2,3}), with minima (1,1,2,2), summing to a(540) = 6.
		

Crossrefs

For leaders of constant runs we have A066328.
A version for compositions is A374684, row-sums of A374683 (length A124768).
Row-sums of A375128.
For length instead of sum we have A375136.
A055887 counts sequences of partitions with total sum n.
A112798 lists prime indices:
- length A001222, distinct A001221
- leader A055396
- sum A056239
- reverse A296150

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[First/@Split[prix[n],Less]],{n,100}]

A374759 Numbers k such that the leaders of strictly decreasing runs in the k-th composition in standard order are identical.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 15, 16, 17, 18, 21, 22, 31, 32, 33, 34, 36, 37, 42, 45, 63, 64, 65, 66, 68, 69, 73, 76, 85, 86, 90, 127, 128, 129, 130, 132, 133, 136, 137, 146, 148, 153, 170, 173, 181, 182
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.

Examples

			The 18789th composition in standard order is (3,3,2,1,3,2,1), with strictly decreasing runs ((3),(3,2,1),(3,2,1)), with leaders (3,3,3), so 18789 is in the sequence.
The terms together with the corresponding compositions begin:
   0: ()
   1: (1)
   2: (2)
   3: (1,1)
   4: (3)
   5: (2,1)
   7: (1,1,1)
   8: (4)
   9: (3,1)
  10: (2,2)
  15: (1,1,1,1)
  16: (5)
  17: (4,1)
  18: (3,2)
  21: (2,2,1)
  22: (2,1,2)
  31: (1,1,1,1,1)
  32: (6)
  33: (5,1)
  34: (4,2)
  36: (3,3)
  37: (3,2,1)
		

Crossrefs

For leaders of anti-runs we have A374519 (counted by A374517).
For leaders of weakly increasing runs we have A374633, counted by A374631.
The opposite version is A374685 (counted by A374686).
The weak version is A374744.
Compositions of this type are counted by A374760.
For distinct instead of identical runs we have A374767 (counted by A374761).
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Ranks of non-contiguous compositions are A374253, counted by A335548.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],SameQ@@First/@Split[stc[#],Greater]&]

A188900 Number of compositions of n that avoid the pattern 12-3.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 31, 60, 114, 215, 402, 746, 1375, 2520, 4593, 8329, 15036, 27027, 48389, 86314, 153432, 271853, 480207, 845804, 1485703, 2603018, 4549521, 7933239, 13803293, 23966682, 41530721, 71830198, 124010381, 213725823, 367736268, 631723139, 1083568861
Offset: 0

Views

Author

Nathaniel Johnston, Apr 17 2011

Keywords

Comments

First differs from the non-dashed version A102726 at a(9) = 215, A102726(9) = 214, due to the composition (1,3,2,3).
The value a(11) = 7464 in Heubach et al. is a typo.
Theorem: A composition avoids 3-12 iff its leaders of maximal weakly decreasing runs are weakly increasing. For example, the composition q = (1,1,2,1,2,2,1,3) has maximal weakly decreasing runs ((1,1),(2,1),(2,2,1),(3)), with leaders (1,2,2,3), which are weakly increasing, so q is counted under a(13); also q avoids 3-12, as required. On the other hand, the composition q = (3,2,1,2,2,1,2) has maximal weakly decreasing runs ((3,2,1),(2,2,1),(2)), with leaders (3,2,2), which are not weakly increasing, so q is not counted under a(13); also q matches 3-12, as required. - Gus Wiseman, Aug 21 2024

Examples

			The initial terms are too dense, but see A375406 for the complement. - _Gus Wiseman_, Aug 21 2024
		

Crossrefs

The non-dashed version A102726, non-ranks A335483.
For 23-1 we have A189076.
The non-ranks are a subset of A335479 and do not include 404, 788, 809, ...
For strictly increasing leaders we have A358836, ranks A326533.
The strict version is A374762.
The complement is counted by A375406.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.

Programs

  • Maple
    with(PolynomialTools):n:=20:taypoly:=taylor(mul(1/(1 - x^i/mul(1-x^j,j=1..i-1)),i=1..n),x=0,n+1):seq(coeff(taypoly,x,m),m=0..n);
  • Mathematica
    m = 35;
    Product[1/(1 - x^i/Product[1 - x^j, {j, 1, i - 1}]), {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Mar 31 2020 *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], LessEqual@@First/@Split[#,GreaterEqual]&]],{n,0,15}] (* Gus Wiseman, Aug 21 2024 *)

Formula

G.f.: Product_{i>=1} (1/(1 - x^i/Product_{j=1..i-1} (1 - x^j))).
a(n) = 2^(n-1) - A375406(n). - Gus Wiseman, Aug 22 2024

A375124 Weakly decreasing run-leader transformation for standard compositions.

Original entry on oeis.org

0, 1, 2, 1, 4, 2, 6, 1, 8, 4, 2, 2, 12, 6, 6, 1, 16, 8, 4, 4, 20, 2, 10, 2, 24, 12, 6, 6, 12, 6, 6, 1, 32, 16, 8, 8, 4, 4, 18, 4, 40, 20, 2, 2, 20, 10, 10, 2, 48, 24, 12, 12, 52, 6, 26, 6, 24, 12, 6, 6, 12, 6, 6, 1, 64, 32, 16, 16, 8, 8, 34, 8, 72, 4, 4, 4, 36
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The a(n)-th composition in standard order lists the leaders of weakly decreasing runs in the n-th composition in standard order.
The leaders of weakly decreasing runs in a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 813th composition in standard order is (1,3,2,1,2,1), with weakly decreasing runs ((1),(3,2,1),(2,1)), with leaders (1,3,2). This is the 50th composition in standard order, so a(813) = 50.
		

Crossrefs

Positions of elements of A233564 are A374701, counted by A374743.
Positions of elements of A272919 are A374744, counted by A374742.
Ranks of rows of A374740.
The opposite version is A375123.
The strict version is A375126.
The strict opposite version is A375125.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) = A070939(n).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Run-sum transformation is A353847.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[First/@Split[stc[n],GreaterEqual]],{n,0,100}]

Formula

A000120(a(n)) = A124765(n).
A065120(a(n)) = A065120(n).
A070939(a(n)) = A374741(n).

A375125 Strictly increasing run-leader transformation for standard compositions.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 1, 7, 8, 9, 10, 11, 1, 3, 3, 15, 16, 17, 18, 19, 2, 21, 5, 23, 1, 3, 6, 7, 3, 7, 7, 31, 32, 33, 34, 35, 36, 37, 9, 39, 2, 5, 42, 43, 5, 11, 11, 47, 1, 3, 6, 7, 1, 13, 3, 15, 3, 7, 14, 15, 7, 15, 15, 63, 64, 65, 66, 67, 68, 69, 17, 71, 4, 73
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The a(n)-th composition in standard order lists the leaders of strictly increasing runs in the n-th composition in standard order.
The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 813th composition in standard order is (1,3,2,1,2,1), with strictly increasing runs ((1,3),(2),(1,2),(1)), with leaders (1,2,1,1). This is the 27th composition in standard order, so a(813) = 27.
		

Crossrefs

Positions of elements of A233564 are A374698, counted by A374687.
Positions of elements of A272919 are A374685, counted by A374686.
Ranks of rows of A374683.
The weak version is A375123.
The weak opposite version is A375124.
The opposite version is A375126.
Other transformations: A375127, A373948.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) = A070939(n).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Run-sum transformation is A353847.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[First/@Split[stc[n],Less]],{n,0,100}]

Formula

A000120(a(n)) = A124768(n).
A065120(a(n)) = A065120(n).
A070939(a(n)) = A374684(n).

A374636 Number of integer compositions of n whose leaders of maximal weakly increasing runs are not weakly decreasing.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 10, 28, 72, 178, 425, 985, 2237, 4999, 11016, 24006, 51822, 110983, 236064, 499168, 1050118, 2199304, 4587946, 9537506, 19765213, 40847186, 84205453, 173198096, 355520217, 728426569, 1489977348, 3043054678, 6206298312, 12641504738
Offset: 0

Views

Author

Gus Wiseman, Aug 09 2024

Keywords

Comments

The leaders of maximal weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
Also the number of integer compositions of n matching the dashed pattern 1-32, ranked by A375137.
Also the number of integer compositions of n matching the dashed pattern 23-1, ranked by A375138.

Examples

			- The maximal weakly increasing runs of y = (1,1,3,2,1) are ((1,1,3),(2),(1)) with leaders (1,2,1) so y is counted under a(8). Also, y matches 1-32 and avoids 23-1.
- The maximal weakly increasing runs of y = (1,3,2,1,1) are ((1,3),(2),(1,1)) with leaders (1,2,1) so y is counted under a(8). Also, y matches 1-32 and avoids 23-1.
- The maximal weakly increasing runs of y = (2,3,1,1,1) are ((2,3),(1,1,1)) with leaders (2,1) so y is not counted under a(8). Also, y avoids 1-32 and matches 23-1.
- The maximal weakly increasing runs of y = (2,3,2,1) are ((2,3),(2),(1)) with leaders (2,2,1) so y is not counted under a(8). Also, y avoids 1-32 and matches 23-1.
- The maximal weakly increasing runs of y = (2,1,3,1,1) are ((2),(1,3),(1,1)) with leaders (2,1,1) so y is not counted under a(8). Also, y avoids both 1-32 and 23-1.
- The maximal weakly increasing runs of y = (2,1,1,3,1) are ((2),(1,1,3),(1)) with leaders (2,1,1) so y is not counted under a(8). Also, y avoids both 1-32 and 23-1.
The a(0) = 0 through a(8) = 10 compositions:
  .  .  .  .  .  .  (132)  (142)   (143)
                           (1132)  (152)
                           (1321)  (1142)
                                   (1232)
                                   (1322)
                                   (1421)
                                   (2132)
                                   (11132)
                                   (11321)
                                   (13211)
		

Crossrefs

The reverse version is the same.
For leaders of identical runs we have A056823.
The complement is counted by A189076.
The non-dashed version is A335514.
For leaders of anti-runs we have A374699, complement A374682.
For weakly decreasing runs we have the complement of A374747.
For leaders of strictly increasing runs we have A375135, complement A374697.
These compositions are ranked by A375137, reverse A375138.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],!GreaterEqual@@First/@Split[#,LessEqual]&]],{n,0,15}]
    (* or *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],MatchQ[#,{_,y_,z_,_,x_,_}/;x
    				

Formula

a(n) = A011782(n) - A189076(n). - Jinyuan Wang, Feb 14 2025

Extensions

More terms from Jinyuan Wang, Feb 14 2025
Previous Showing 21-30 of 59 results. Next