cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A290776 Triangle T(n,k) read by rows: the number of connected, loopless, non-oriented, vertex-labeled graphs with n >= 0 edges and k >= 1 vertices, allowing multi-edges.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 7, 16, 0, 1, 12, 63, 125, 0, 1, 18, 162, 722, 1296, 0, 1, 25, 341, 2565, 10140, 16807, 0, 1, 33, 636, 7180, 47100, 169137, 262144, 0, 1, 42, 1092, 17335, 168285, 987567, 3271576, 4782969, 0, 1, 52, 1764, 37750, 509545, 4364017, 23315936, 72043092, 100000000
Offset: 0

Views

Author

R. J. Mathar, Aug 10 2017

Keywords

Comments

This is the vertex-labeled companion to A191646.

Examples

			The triangle starts in row n=0 with 1 <= k <= n+1 vertices as
  1;
  0, 1;
  0, 1,  3;
  0, 1,  7,   16;
  0, 1, 12,   63,   125;
  0, 1, 18,  162,   722,   1296;
  0, 1, 25,  341,  2565,  10140,   16807;
  0, 1, 33,  636,  7180,  47100,  169137,   262144;
  0, 1, 42, 1092, 17355, 168285,  987567,  3271576,  4782969;
  0, 1, 52, 1764, 37750, 509545, 4364017, 23315936, 72043092, 100000000;
  ...
		

Crossrefs

Cf. A055998 (k=3), A000272 (diagonal), A060091 (k=4?), A060093 (k=5?).

Programs

  • Mathematica
    S[m_, n_] := Binomial[Binomial[m, 2] + n - 1, n];
    R[nn_] := Module[{cc = Array[0&, {nn, nn}]}, cc[[1, 1]] = 1; For[m = 1, m <= nn, m++, For[n = 1, n <= nn-1, n++, cc[[m, n+1]] = S[m, n] - S[m-1, n] - Sum[Sum[Binomial[m-1, i-1]*cc[[i, j+1]]*S[m-i, n-j], {j, 1, n}], {i, 2, m-1}]]]; cc // Transpose];
    A = R[10];
    Table[A[[n, k]], {n, 1, Length[A]}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 13 2018, after Andrew Howroyd *)
  • PARI
    \\ here S(m,n) is m nodes with n edges, not necessarily connected
    S(m,n)={ binomial(binomial(m,2) + n - 1, n) }
    R(N)={ my(C=matrix(N,N)); C[1,1]=1; for(m=1, N, for(n=1, N-1, C[m,n+1] = S(m,n) - S(m-1,n) - sum(i=2, m-1, sum(j=1, n, binomial(m-1, i-1)*C[i,j+1]*S(m-i, n-j))))); C~; }
    { my(A=R(10)); for(n=1, #A, for(k=1, n, print1(A[n,k],", ")); print) } \\ Andrew Howroyd, May 13 2018

Extensions

Terms a(34) and beyond from Andrew Howroyd, May 13 2018

A290778 Number of connected undirected unlabeled loopless multigraphs with 4 vertices and n edges.

Original entry on oeis.org

0, 0, 0, 2, 5, 11, 22, 37, 61, 95, 141, 203, 288, 393, 531, 704, 918, 1180, 1504, 1887, 2351, 2900, 3546, 4301, 5187, 6202, 7379, 8726, 10262, 12005, 13987, 16209, 18716, 21521, 24652, 28135, 32013, 36291, 41028, 46244, 51977, 58262, 65155, 72667, 80872, 89798
Offset: 0

Views

Author

R. J. Mathar, Aug 10 2017

Keywords

Comments

There are 6 basic underlying simple graphs on 4 vertices: the linear chain with 3 edges (a tree), the star graph with 3 edges (a tree), the 4-cycle (quadrangle) with 4 edges, the triangle extended with one edge protruding to a vertex of degree 1 (4 edges), the complete graph on 4 vertices with 6 edges, a graph with 5 edges (removing one from the complete graph).

Examples

			There are a(3) = 2 connected graphs of 3 edges and 4 vertices, the A000055(4) = 2 trees on 4 vertices.
There are a(4)=5 connected graphs of 4 edges and 4 vertices: duplicate either the middle or a sided edge of the linear chain, duplicate an edge of the star graph, or take any of the two underlying simple graphs with 4 edges.
		

Crossrefs

Column 4 of A191646.

Formula

G.f.: -x^3*(x^10-x^9-2*x^7+x^6-x^5+3*x^4-x^2-x-2)/( (x-1)^6 *(1+x)^2 *(1+x^2) *(1+x+x^2)^2 ). - R. J. Mathar, Aug 11 2017

A309936 Irregular triangle read by rows: T(n,k) is the number of unlabeled loopless multigraphs with n edges covering k vertices, n >= 1, 1 <= k <= 2*n.

Original entry on oeis.org

0, 1, 0, 1, 1, 1, 0, 1, 2, 3, 1, 1, 0, 1, 3, 7, 6, 4, 1, 1, 0, 1, 4, 13, 17, 17, 8, 4, 1, 1, 0, 1, 6, 25, 44, 56, 41, 24, 9, 4, 1, 1, 0, 1, 7, 40, 101, 164, 158, 117, 57, 26, 9, 4, 1, 1, 0, 1, 9, 65, 216, 450, 562, 503, 315, 162, 64, 27, 9, 4, 1, 1
Offset: 1

Views

Author

Andrew Howroyd, Oct 23 2019

Keywords

Comments

Covering k vertices means there are no vertices of degree zero.

Examples

			Triangle begins:
  0, 1;
  0, 1, 1,  1;
  0, 1, 2,  3,   1,   1;
  0, 1, 3,  7,   6,   4,   1,   1;
  0, 1, 4, 13,  17,  17,   8,   4,  1,  1;
  0, 1, 6, 25,  44,  56,  41,  24,  9,  4, 1, 1;
  0, 1, 7, 40, 101, 164, 158, 117, 57, 26, 9, 4, 1, 1;
  ...
		

Crossrefs

Row sums are A050535.
Columns k=3..4 are A253186, A328652.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    C(n,m)={my(s=O(x*x^m)); forpart(p=n, s+=permcount(p)/edges(p, i->1-x^i+O(x*x^m))); Col(s/n!)}
    T(m) = {my(n=2*m, A=Mat(vector(n+1, n, C(n-1,m)))); A[2..m+1, 2..n+1]-A[2..m+1, 1..n]}
    { my(A=T(8)); for(n=1, matsize(A)[1], print(A[n, 1..2*n])) }

Formula

T(n,k) = A192517(k,n) - A192517(k-1,n) for k > 1.

A322148 Regular triangle where T(n,k) is the number of labeled connected multigraphs with loops with n edges and k vertices.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 6, 16, 16, 1, 10, 51, 127, 125, 1, 15, 126, 574, 1347, 1296, 1, 21, 266, 1939, 8050, 17916, 16807, 1, 28, 504, 5440, 35210, 135156, 286786, 262144, 1, 36, 882, 13387, 125730, 736401, 2642122, 5368728, 4782969, 1, 45, 1452, 29854, 388190, 3239491, 17424610, 58925728, 115089813, 100000000
Offset: 0

Views

Author

Gus Wiseman, Nov 28 2018

Keywords

Examples

			Triangle begins:
  1
  1     1
  1     3     3
  1     6    16    16
  1    10    51   127   125
  1    15   126   574  1347  1296
  1    21   266  1939  8050 17916 16807
		

Crossrefs

Row sums are A322152. Last column is A000272.

Programs

  • Mathematica
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[If[n==0,1,Length[Select[multsubs[multsubs[Range[k],2],n],And[Union@@#==Range[k],Length[csm[#]]==1]&]]],{n,0,5},{k,1,n+1}]
  • PARI
    Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
    M(n)={Mat([Col(p, -(n+1)) | p<-Connected(vector(2*n, j, 1/(1 - x + O(x*x^n) )^binomial(j+1, 2)))[1..n+1]])}
    { my(T=M(10)); for(n=1, #T, print(T[n,][1..n])) } \\ Andrew Howroyd, Nov 29 2018

Extensions

Offset corrected and terms a(28) and beyond from Andrew Howroyd, Nov 29 2018

A265582 Number of (unlabeled) connected loopless multigraphs such that the sum of the numbers of vertices and edges is n.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 3, 6, 10, 21, 41, 87, 187, 423, 971, 2324, 5668, 14224, 36506, 95880, 257081, 703616, 1962887, 5578529, 16137942, 47492141, 142093854, 432001458, 1333937382, 4181500703, 13301265585, 42918900353, 140423545125, 465712099790, 1565092655597
Offset: 0

Views

Author

Michael Joseph, Dec 10 2015

Keywords

Comments

Also the number of connected skeletal 2-cliquish graphs with n vertices. See Einstein et al. link below.
a(n) can be computed from A265580 and/or A265581, and partitions of n, by taking all loopless multigraphs (V,E) with |V| + |E| = n and subtracting out the disconnected ones.
a(n) <= A265580(n) except when n=1, and a(n) < A265580(n) for n>=6.

Examples

			For n = 5, the a(5) = 2 such multigraphs are the graph with three vertices and edges from one vertex to each of the other two, and the graph with two vertices connected by three edges.
		

Crossrefs

Programs

  • PARI
    \\ See A191646 for G, InvEulerMT.
    seq(n)={my(v=InvEulerMT(vector((n+1)\2, k, 1 + y*Ser(G(k, n-1), y)))); Vec(1 + sum(i=1, #v, v[i]*y^i) + O(y*y^n))} \\ Andrew Howroyd, Feb 01 2020

Formula

From Andrew Howroyd, Feb 01 2020: (Start)
a(n) = Sum_{k=1..ceiling(n/2)} A191646(n-k, k) for n > 0.
Inverse Euler transform of A265581. (End)

Extensions

Terms a(19) and beyond from Andrew Howroyd, Feb 01 2020

A322134 Regular tetrangle where T(n,k,i) is the number of unlabeled connected multiset partitions of weight n with k vertices and i edges.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 1, 2, 4, 2, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 2, 2, 1, 1, 2, 7, 6, 2, 2, 6, 4, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 3, 3, 2, 1, 1, 3, 14, 17, 9, 3, 3, 17, 18, 7, 2, 9, 7, 1, 3, 1, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Nov 27 2018

Keywords

Examples

			Tetrangle begins:
  1
.
  0 0
  1
.
  0 0 0
  1 1
  1
.
  0 0 0 0
  1 1 1
  1 1
  1
.
  0 0 0 0 0
  1 2 1 1
  2 4 2
  1 2
  1
.
  0 0 0 0 0 0
  1 2 2 1 1
  2 7 6 2
  2 6 4
  1 2
  1
.
  0  0  0  0  0  0  0
  1  3  3  2  1  1
  3 14 17  9  3
  3 17 18  7
  2  9  7
  1  3
  1
.
  0  0  0  0  0  0  0  0
  1  3  4  3  2  1  1
  3 20 33 24 11  3
  4 33 59 35 10
  3 24 35 14
  2 11 10
  1  3
  1
		

Crossrefs

Previous Showing 21-26 of 26 results.