A192755
Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
Original entry on oeis.org
0, 1, 7, 19, 42, 82, 150, 263, 449, 753, 1248, 2052, 3356, 5469, 8891, 14431, 23398, 37910, 61394, 99395, 160885, 260381, 421372, 681864, 1103352, 1785337, 2888815, 4674283, 7563234, 12237658, 19801038, 32038847, 51840041, 83879049
Offset: 0
-
p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + 5 n + 1;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
(* A192754 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A192755 *)
A192773
Coefficient of x in the reduction of the n-th Fibonacci polynomial by x^3->x^2+2x+1.
Original entry on oeis.org
0, 1, 0, 4, 3, 18, 30, 98, 219, 596, 1464, 3783, 9540, 24328, 61740, 156985, 398904, 1013772, 2576475, 6547574, 16640382, 42288806, 107473443, 273129468, 694130016, 1764047839, 4483130424, 11393354512, 28954911624, 73585574049
Offset: 1
The first five polynomials p(n,x) and their reductions are as follows:
F1(x)=1 -> 1
F2(x)=x -> x
F3(x)=x^2+1 -> x^2+1
F4(x)=x^3+2x -> x^2+4x+1
F5(x)=x^4+3x^2+1 -> 6x^2+3x+2, so that
A192772=(1,0,1,1,2,...), A192773=(0,1,0,4,3,...), A192774=(0,0,1,1,6,...)
-
(See A192772.)
LinearRecurrence[{1,5,-1,-5,1,1},{0,1,0,4,3,18},40] (* Harvey P. Dale, Aug 07 2025 *)
A192774
Coefficient of x^2 in the reduction of the n-th Fibonacci polynomial by x^3->x^2+2x+1.
Original entry on oeis.org
0, 0, 1, 1, 6, 10, 34, 74, 206, 499, 1301, 3264, 8348, 21152, 53828, 136720, 347533, 883157, 2244462, 5704094, 14496130, 36840606, 93625542, 237939591, 604694601, 1536764208, 3905506648, 9925401280, 25224262440, 64104575344
Offset: 1
The first five polynomials p(n,x) and their reductions are as follows:
F1(x)=1 -> 1
F2(x)=x -> x
F3(x)=x^2+1 -> x^2+1
F4(x)=x^3+2x -> x^2+4x+1
F5(x)=x^4+3x^2+1 -> 6x^2+3x+2, so that
A192772=(1,0,1,1,2,...), A192773=(0,1,0,4,3,...), A192774=(0,0,1,1,6,...)
-
(See A192772.)
LinearRecurrence[{1,5,-1,-5,1,1},{0,0,1,1,6,10},30] (* Harvey P. Dale, Jun 25 2017 *)
A192780
Constant term in the reduction of the n-th Fibonacci polynomial by x^3->x^2+1. See Comments.
Original entry on oeis.org
1, 0, 1, 1, 2, 5, 8, 19, 34, 71, 137, 272, 537, 1056, 2089, 4112, 8121, 16009, 31586, 62301, 122888, 242411, 478146, 943183, 1860433, 3669792, 7238769, 14278720, 28165265, 55556896, 109587889, 216165713, 426394178, 841076725, 1659052040
Offset: 1
The first five polynomials p(n,x) and their reductions:
F1(x)=1 -> 1
F2(x)=x -> x
F3(x)=x^2+1 -> x^2+1
F4(x)=x^3+2x -> x^2+2x+1
F5(x)=x^4+3x^2+1 -> 4x^2+1x+2, so that
A192777=(1,0,1,1,2,...), A192778=(0,1,0,2,1,...), A192779=(0,0,1,1,4,...)
-
q = x^3; s = x^2 + 1; z = 40;
p[n_, x_] := Fibonacci[n, x];
Table[Expand[p[n, x]], {n, 1, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 1, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
(* A192780 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A192781 *)
u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}]
(* A192782 *)
LinearRecurrence[{1,3,-1,-3,1,1},{1,0,1,1,2,5},40] (* Harvey P. Dale, Nov 07 2021 *)
A192781
Coefficient of x in the reduction of the n-th Fibonacci polynomial by x^3->x^2+1.
Original entry on oeis.org
0, 1, 0, 2, 1, 4, 6, 12, 25, 46, 96, 183, 368, 720, 1424, 2809, 5536, 10930, 21545, 42516, 83846, 165404, 326257, 643550, 1269440, 2503983, 4939232, 9742752, 19217952, 37908017, 74774848, 147495906, 290940561, 573890084, 1132017286, 2232942124
Offset: 1
The first five polynomials p(n,x) and their reductions:
F1(x)=1 -> 1
F2(x)=x -> x
F3(x)=x^2+1 -> x^2+1
F4(x)=x^3+2x -> x^2+2x+1
F5(x)=x^4+3x^2+1 -> 4x^2+1x+2, so that
A192777=(1,0,1,1,2,...), A192778=(0,1,0,2,1,...), A192779=(0,0,1,1,4,...)
-
q = x^3; s = x^2 + 1; z = 40;
p[n_, x_] := Fibonacci[n, x];
Table[Expand[p[n, x]], {n, 1, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 1, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
(* A192780 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A192781 *)
u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}]
(* A192782 *)
A192801
Constant term in the reduction of the polynomial (x+2)^n by x^3->x^2+x+1. See Comments.
Original entry on oeis.org
1, 2, 4, 9, 25, 84, 312, 1199, 4637, 17906, 68976, 265249, 1019069, 3913484, 15026092, 57690143, 221487945, 850350482, 3264725772, 12534190569, 48122302705, 184755243892, 709328262928, 2723314511871, 10455585321989, 40141990468066
Offset: 0
The first five polynomials p(n,x) and their reductions:
p(1,x)=1 -> 1
p(2,x)=x+2 -> x+2
p(3,x)=x^2+4x+4 -> x^2+1
p(4,x)=x^3+6x^2+12x+8 -> x^2+4x+4
p(5,x)=x^4+8x^3+24x^2+32x+16 -> 7x^2+13*x+9, so that
A192798=(1,2,4,9,25,...), A192799=(0,1,4,13,42,...), A192800=(0,0,1,7,34,...).
-
q = x^3; s = x^2 + x + 1; z = 40;
p[n_, x_] := (x + 2)^n;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192801 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A192802 *)
u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}]
(* A192803 *)
A192804
Constant term in the reduction of the polynomial 1+x+x^2+...+x^n by x^3->x^2+x+1. See Comments.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 9, 16, 29, 53, 97, 178, 327, 601, 1105, 2032, 3737, 6873, 12641, 23250, 42763, 78653, 144665, 266080, 489397, 900141, 1655617, 3045154, 5600911, 10301681, 18947745, 34850336, 64099761, 117897841, 216847937, 398845538
Offset: 0
The first five polynomials p(n,x) and their reductions:
p(1,x)=1 -> 1,
p(2,x)=x+1 -> x+1,
p(3,x)=x^2+x+1 -> x^2+x+1,
p(4,x)=x^3+x^2+x+1 -> 2x^2+2x+2,
p(5,x)=x^4+x^3+x^2+x+1 -> 4x^2+4*x+3, so that
A192804=(1,1,1,2,3,...), A000073=(0,1,1,2,4,...), A008937=(0,0,1,2,4,...).
-
q = x^3; s = x^2 + x + 1; z = 40;
p[0, x_] := 1; p[n_, x_] := x^n + p[n - 1, x];
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
(* A192804 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A000073 *)
u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}]
(* A008937 *)
A192809
Coefficient of x in the reduction of the polynomial (x^2 + 2)^n by x^3 -> x^2 + 2.
Original entry on oeis.org
0, 0, 2, 14, 74, 366, 1786, 8702, 42410, 206734, 1007834, 4913310, 23953034, 116774190, 569289402, 2775359806, 13530239338, 65961672910, 321571716762, 1567703857118, 7642759781962, 37259445922414, 181644634930298, 885541171698814
Offset: 0
-
a:=[0,0,2];; for n in [4..25] do a[n]:=7*a[n-1]-12*a[n-2]+8*a[n-3]; od; Print(a); # Muniru A Asiru, Jan 02 2019
-
m:=30; R:=PowerSeriesRing(Integers(), m); [0,0] cat Coefficients(R!( 2*x^2/(1-7*x+12*x^2-8*x^3) )); // G. C. Greubel, Jan 02 2019
-
(See A192808.)
LinearRecurrence[{7,-12,8}, {0,0,2}, 30] (* G. C. Greubel, Jan 02 2019 *)
-
my(x='x+O('x^30)); concat([0,0], Vec(2*x^2/(1-7*x+12*x^2-8*x^3))) \\ G. C. Greubel, Jan 02 2019
-
(2*x^2/(1-7*x+12*x^2-8*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 02 2019
Original entry on oeis.org
0, 0, 1, 7, 37, 183, 893, 4351, 21205, 103367, 503917, 2456655, 11976517, 58387095, 284644701, 1387679903, 6765119669, 32980836455, 160785858381, 783851928559, 3821379890981, 18629722961207, 90822317465149, 442770585849407
Offset: 0
-
a:=[0,0,1];; for n in [4..25] do a[n]:=7*a[n-1]-12*a[n-2]+8*a[n-3]; od; Print(a); # Muniru A Asiru, Jan 03 2019
-
m:=30; R:=PowerSeriesRing(Integers(), m); [0,0] cat Coefficients(R!( x^2/(1-7*x+12*x^2-8*x^3) )); // G. C. Greubel, Jan 03 2019
-
(See A192808.)
LinearRecurrence[{7,-12,8},{0,0,1},30] (* Harvey P. Dale, Dec 06 2018 *)
-
my(x='x+O('x^30)); concat([0,0], Vec(x^2/(1-7*x+12*x^2-8*x^3))) \\ G. C. Greubel, Jan 03 2019
-
(x^2/(1-7*x+12*x^2-8*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 03 2019
A192814
Constant term in the reduction of the polynomial (2*x+1)^n by x^3 -> x^2 + x + 1. See Comments.
Original entry on oeis.org
1, 1, 1, 9, 49, 225, 1041, 4873, 22817, 106753, 499425, 2336585, 10931921, 51145825, 239289457, 1119533257, 5237818689, 24505519873, 114650876097, 536402551689, 2509598769265, 11741342323937, 54932733173713, 257006830281609
Offset: 0
-
a:=[1,1,1];; for n in [4..25] do a[n]:=5*a[n-1]-3*a[n-2]+7*a[n-3]; od; Print(a); # Muniru A Asiru, Jan 03 2019
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-4*x-x^2)/(1-5*x+3*x^2-7*x^3) )); // G. C. Greubel, Jan 03 2019
-
seq(coeff(series((1-4*x-x^2)/(1-5*x+3*x^2-7*x^3),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Jan 03 2019
-
q = x^3; s = x^2 + x + 1; z = 40;
p[n_, x_] := (2 x + 1)^n;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192814 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192815 *)
u2 = u2/2 (* A192816 *)
LinearRecurrence[{5,-3,7}, {1,1,1}, 30] (* G. C. Greubel, Jan 03 2019 *)
-
my(x='x+O('x^30)); Vec((1-4*x-x^2)/(1-5*x+3*x^2-7*x^3)) \\ G. C. Greubel, Jan 03 2019
-
((1-4*x-x^2)/(1-5*x+3*x^2-7*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 03 2019
Comments