cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A226646 Number of ways to express m/n as Egyptian fractions in just three terms, that is, m/n = 1/x + 1/y + 1/z satisfying 1 <= x <= y <= z and read by antidiagonals.

Original entry on oeis.org

3, 1, 10, 1, 3, 21, 0, 3, 8, 28, 0, 1, 3, 10, 36, 0, 1, 3, 6, 12, 57, 0, 1, 2, 3, 10, 21, 42, 0, 0, 1, 4, 2, 10, 17, 70, 0, 0, 1, 3, 3, 8, 9, 28, 79, 0, 0, 0, 1, 3, 4, 7, 20, 26, 96, 0, 0, 1, 1, 2, 3, 4, 10, 21, 36, 62, 0, 0, 0, 1, 1, 7, 1, 7, 6, 21, 25, 160, 0, 0, 0, 1, 0, 3, 3, 6, 12, 12, 16, 57, 59
Offset: 1

Views

Author

Keywords

Comments

See A073101 for the 4/n conjecture due to Erdös and Straus.
The first upper diagonal is 10, 8, 6, 2, 4, 1, 2, 1, 2, 0, 3, 0, 0, 1, 0, 0, 1, 0, 1, 0,... .
The main diagonal is: 3, 3, 3, 3, 3, 3, ... since 1 = 1/2 + 1/3 + 1/6 = 1/2 + 1/4 + 1/4 = 1/3 + 1/3 + 1/3. See A002966(3).
The first lower diagonal is 1, 3, 3, 4, 3, 7, 3, 5, 4, 6, 3, 10, 3, 6, 6, 6, 3, 9, 3, 9, ... .
The antidiagonal sum is 3, 11, 25, 39, 50, 79, 79, 104, 131, 157, 140, 229, 169, 220, 295, 282, ... .

Examples

			../n
m/ 1...2...3...4...5...6...7...8...9..10..11...12..13...14...15 =Allocation nbr.
.1 3..10..21..28..36..57..42..70..79..96..62..160..59..136..196 A004194
.2 1...3...8..10..12..21..17..28..26..36..25...57..20...42...81 A226641
.3 1...3...3...6..10..10...9..20..21..21..16...28..11...33...36 A226642
.4 0...1...3...3...2...8...7..10...6..12...9...21...4...17...39 A192787
.5 0...1...2...4...3...4...4...7..12..10...3...17...6...21...21 A226644
.6 0...1...1...3...3...3...1...6...8..10...7...10...1....9...12 A226645
.7 0...0...1...1...2...7...3...2...3...5...2...13...8...10....9 n/a
.8 0...0...0...1...1...3...3...3...1...2...0....8...3....7...19 n/a
.9 0...0...1...1...0...3...2...5...3...2...0....6...2....4...10 n/a
10 0...0...0...1...1...2...0...4...4...3...0....4...1....4....8 n/a
Triangle (by antidiagonals):
  {3},
  {1, 10},
  {1, 3, 21},
  {0, 3, 8, 28},
  {0, 1, 3, 10, 36},
  {0, 1, 3, 6, 12, 57},
  ...
		

Crossrefs

Programs

  • Mathematica
    f[m_, n_] := Length@ Solve[m/n == 1/x + 1/y + 1/z && 1 <= x <= y <= z, {x, y, z}, Integers]; Table[f[n, m - n + 1], {m, 12}, {n, m, 1, -1}] // Flatten

A292624 Number of solutions to 4/p = 1/x + 1/y + 1/z in positive integers, where p is the n-th prime.

Original entry on oeis.org

3, 12, 12, 36, 48, 24, 24, 60, 120, 42, 108, 54, 42, 78, 198, 78, 156, 66, 96, 234, 42, 216, 156, 60, 48, 96, 156, 144, 90, 78, 192, 186, 102, 210, 108, 180, 144, 138, 384, 156, 276, 102, 396, 36, 138, 246, 174, 342, 216, 120, 114, 630, 48, 300
Offset: 1

Views

Author

Hugo Pfoertner, Sep 20 2017

Keywords

Comments

Corrected version of A192788.

Examples

			a(3) = 12 because 4/(3rd prime) = 4/5 can be expressed in the following 12 ways:
  4/5 =  1/2  + 1/4  + 1/20
  4/5 =  1/2  + 1/5  + 1/10
  4/5 =  1/2  + 1/10 + 1/5
  4/5 =  1/2  + 1/20 + 1/4
  4/5 =  1/4  + 1/2  + 1/20
  4/5 =  1/4  + 1/20 + 1/2
  4/5 =  1/5  + 1/2  + 1/10
  4/5 =  1/5  + 1/10 + 1/2
  4/5 =  1/10 + 1/2  + 1/5
  4/5 =  1/10 + 1/5  + 1/2
  4/5 =  1/20 + 1/2  + 1/4
  4/5 =  1/20 + 1/4  + 1/2
		

References

  • For references and links see A192787.

Crossrefs

Programs

  • Mathematica
    checkmult[a_, b_, c_] := If[Denominator[c] == 1, If[a == b && a == c && b == c, Return[1], If[a != b && a != c && b != c, Return[6], Return[3]]], Return[0]];
    a292581[n_] := Module[{t, t1, s, a, b, c, q = Quotient}, t = 4/n; s = 0; For[a = q[1, t] + 1, a <= q[3, t], a++, t1 = t - 1/a; For[b = Max[q[1, t1] + 1, a], b <= q[2, t1], b++, c = 1/(t1 - 1/b); s += checkmult[a, b, c]]]; Return[s]];
    Reap[For[n = 1, n <= 54, n++, Print[n, " ", an = a292581[Prime[n]]]; Sow[an]]][[2, 1]] (* Jean-François Alcover, Dec 02 2018, adapted from PARI *)
  • PARI
    checkmult (a,b,c) =
    {
      if(denominator(c)==1,
         if(a==b && a==c && b==c,
            return(1),
            if(a!=b && a!=c && b!=c,
               return(6),
               return(3)
              )
           ),
         return(0)
         )
    }
    a292624(n) =
    {
      local(t, t1, s, a, b, c);
      t = 4/prime(n);
      s = 0;
      for (a=1\t+1, 3\t,
         t1=t-1/a;
         for (b=max(1\t1+1,a), 2\t1,
              c=1/(t1-1/b);
              s+=checkmult(a,b,c);
             )
          );
      return(s);
    }
    for (n=1,54,print1(a292624(n),", "))

Formula

a(n) = A292581(A000040(n)).

A192789 Number of distinct solutions of 4/p = 1/a + 1/b + 1/c in positive integers satisfying 1<=a<=b<=c where p is the n-th prime.

Original entry on oeis.org

1, 3, 2, 7, 9, 4, 4, 11, 21, 7, 19, 9, 7, 14, 34, 13, 27, 11, 17, 40, 7, 37, 27, 10, 8, 16, 27, 25, 15, 13, 33, 32, 17, 36, 18, 31, 24, 24, 65, 26, 47, 17, 67, 6, 23, 42, 30, 58, 37, 20, 19, 106, 8, 51, 19, 71, 28, 48, 31, 17, 33, 34, 40, 79, 16, 34, 38, 21, 39, 32, 19, 110, 52, 33, 39, 86, 30, 29, 23, 15, 81, 16, 93, 19
Offset: 1

Views

Author

Keywords

Comments

The Erdos-Straus conjecture is equivalent to the conjecture that a(n) > 0 for all n.

Examples

			a(1) = 1 because 4/prime(1) = 1/1 + 1/2 + 1/2.
		

Crossrefs

A292624 counts the solutions with multiplicity.

Programs

  • Maple
    a:= n-> A192787(ithprime(n)):
    seq(a(n), n=1..70);
  • Mathematica
    a[n_] := a[n] = Module[{a, b, c, r}, r = Reduce[1 <= a <= b <= c && 4/Prime[n] == 1/a + 1/b + 1/c, {a, b, c}, Integers]; Which[Head[r] === Or, Length[r], Head[r] === And, 1, r === False, 0, True, Print["error: ", r]]];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 84}] (* Jean-François Alcover, Nov 22 2017 *)
  • PARI
    a(n)=my(t=4/prime(n), t1, s, c); for(a=1\t+1, 3\t, t1=t-1/a; for(b=1\t1+1, 2\t1, c=1/(t1-1/b); if(denominator(c)==1&&c>=b, s++))); s

Formula

a(n) = A192787(prime(n)). - Michel Marcus, Aug 20 2014

A337432 a(n) is the least value of z such that 4/n = 1/x + 1/y + 1/z with 0 < x <= y <= z has at least one solution.

Original entry on oeis.org

2, 3, 3, 10, 6, 14, 6, 9, 10, 33, 9, 52, 14, 12, 12, 102, 18, 57, 15, 21, 22, 138, 18, 50, 26, 27, 21, 232, 24, 248, 24, 33, 34, 30, 27, 370, 38, 39, 30, 164, 35, 258, 33, 36, 46, 329, 36, 98, 50, 51, 39, 742, 54, 44, 42, 57, 58, 885, 45, 549, 62, 56, 48, 60, 66, 603
Offset: 2

Views

Author

Hugo Pfoertner, Oct 13 2020

Keywords

Comments

See A073101 and A192787 for the history of the problem, references, and links.

Examples

			a(6)=6 because it is the least denominator z in the A192787(6)=8 solutions
  [x, y, z]: [2, 7, 42], [2, 8, 24], [2, 9, 18], [2, 10, 15], [2, 12, 12],
  [3, 4, 12], [3, 6, 6], [4, 4, 6];
a(13)=52 because the minimum of z in the A192787(13)=4 solutions is 52:
  [4, 18, 468], [4, 20, 130], [4, 26, 52], [5, 10, 130].
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local z,x,y;
      for z from floor(n/4)+1 do
        for x from floor(n*z/(4*z-n))+1 to z do
          y:= n*x*z/(4*x*z-n*x-n*z);
          if y::posint and y >= x and y <= z then return z fi
      od od
    end proc:
    map(f, [$2..100]); # Robert Israel, Oct 14 2020
  • Mathematica
    a[n_] := For[z = Floor[n/4] + 1, True, z++, For[x = Floor[n(z/(4z - n))] + 1, x <= z, x++, y = n x z/(4 x z - n x - n z); If[IntegerQ[y] && x <= y <= z, Print[z]; Return [z]]]];
    a /@ Range[2, 100] (* Jean-François Alcover, Oct 23 2020, after Robert Israel *)
  • PARI
    a337432(n)={my(target=4/n,a,b,c,m=oo);for(a=1\target+1,3\target,my(t=target-1/a);for(b=max(1\t+1,a),2\t,c=1/(t-1/b);if(denominator(c)==1,m=min(m,max(a,max(b,c))))));m};
    for(k=2,67,print1(a337432(k),", "))

A287116 Nonsquare integers that cannot be represented in the form 4M-d, where (a*b)|M and d|(a+b) for some positive integers a,b.

Original entry on oeis.org

288, 336, 4545
Offset: 1

Views

Author

Max Alekseyev, May 19 2017

Keywords

Comments

If there are no more terms, the Erdos-Straus conjecture would follow.
This sequence together with the squares (A000290) and E(4) form a partition of the nonnegative integers. That is, this sequence gives nonsquare non-elements of E(4) (see Dubickas and Novikas, 2012).
There are no other terms below 2*10^9.

Crossrefs

Previous Showing 11-15 of 15 results.