cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A375256 Number of pairs of antipodal vertices in the level n Hanoi graph.

Original entry on oeis.org

3, 12, 39, 129, 453, 1677, 6429, 25149, 99453, 395517, 1577469, 6300669, 25184253, 100700157, 402726909, 1610760189, 6442745853, 25770393597, 103080394749, 412319219709, 1649272160253, 6597079203837, 26388297940989, 105553154015229, 422212540563453, 1688850011258877, 6755399743045629
Offset: 1

Views

Author

Allan Bickle, Aug 07 2024

Keywords

Comments

A level 1 Hanoi graph is a triangle. Level n+1 is formed from three copies of level n by adding edges between pairs of corner vertices of each pair of triangles. This graph represents the allowable moves in the Towers of Hanoi problem with n disks.
Antipodal vertices are a pair of vertices at maximum distance in a graph. The diameter of the level n Hanoi graph is 2^n - 1.

Examples

			2 example graphs:
                           o
                          / \
                         o---o
                        /     \
             o         o       o
            / \       / \     / \
           o---o     o---o---o---o
Graph:      H_1           H_2
Since the level 1 Hanoi graph is a triangle, a(1) = 3.
		

Crossrefs

Cf. A000225, A029858, A058809 (Hanoi graphs).
Cf. A370933 (antipodal pairs in Sierpiński triangle graphs).

Programs

  • Mathematica
    A375256[n_] := 3*(2^(2*n - 3) + 3*2^(n - 2) - 1);
    Array[A375256, 30] (* or *)
    LinearRecurrence[{7, -14, 8}, {3, 12, 39}, 30] (* Paolo Xausa, Sep 23 2024 *)
  • PARI
    a(n) = 3*(2^(2*n-3)+3*2^(n-2)-1); \\ Michel Marcus, Aug 08 2024

Formula

a(n) = 3*(2^(2n-3)+3*2^(n-2)-1).
a(n) = A370933(n+1) - 3.
a(n) = 3*A297928(n-2) for n>=2. - Alois P. Heinz, Sep 23 2024

Extensions

More terms from Michel Marcus, Aug 08 2024

A297536 Number of maximum independent vertex sets in the n-Hanoi graph.

Original entry on oeis.org

3, 18, 2925, 11216538648, 627285206516110230354416268831, 109715796815760578436090875708748277077073796614051376195149103817368827024587948919162326
Offset: 1

Views

Author

Eric W. Weisstein, Dec 31 2017

Keywords

Crossrefs

Cf. A288490 (independent vertex sets in the n-Hanoi graph).
Cf. A321249 (maximal independent vertex sets in the n-Hanoi graph).
Cf. A288839 (chromatic polynomials of the n-Hanoi graph).
Cf. A193233 (chromatic polynomial with highest coefficients first).
Cf. A137889 (directed Hamiltonian paths in the n-Hanoi graph).
Cf. A286017 (matchings in the n-Hanoi graph).
Cf. A193136 (spanning trees of the n-Hanoi graph).
Cf. A288796 (undirected paths in the n-Hanoi graph).

Programs

  • Mathematica
    (* Except for one of the initial values, this program is identical to the program for A288490. *)
    {1, 3, 3, 1} . # & /@ NestList[Function[{h, i, j, k}, {h^3 + 6 h^2 i + 9 h i^2 + 3 h^2 j + 2 i^3 + 6 h i j, h^2 i + 4 h i^2 + 2 h^2 j + h^2 k + 8 h i j + 3 i^3 + 4 i^2 j + 2 h j^2 + 2 h i k, h i^2 + 4 h i j + 2 i^3 + 7 i^2 j + 2 h i k + 3 h j^2 + 4 i j^2 + 2 i^2 k + 2 h j k, i^3 + 6 i^2 j + 9 i j^2 + 3 i^2 k + 2 j^3 + 6 i j k}] @@ # &, {0, 1, 0, 0}, 4] (* Pontus von Brömssen, Mar 14 2020 *)
  • PARI
    \\ Except for one of the initial values, this program is identical to the program by Andrew Howroyd for A288490.
    Next(h0, h1, h2, h3) = {[h0^3 + 6*h0^2*h1 + 9*h0*h1^2 + 3*h0^2*h2 + 2*h1^3 + 6*h0*h1*h2, h0^2*h1 + 4*h0*h1^2 + 2*h0^2*h2 + h0^2*h3 + 8*h0*h1*h2 + 3*h1^3 + 4*h1^2*h2 + 2*h0*h2^2 + 2*h0*h1*h3, h0*h1^2 + 4*h0*h1*h2 + 2*h1^3 + 7*h1^2*h2 + 2*h0*h1*h3 + 3*h0*h2^2 + 4*h1*h2^2 + 2*h1^2*h3 + 2*h0*h2*h3, h1^3 + 6*h1^2*h2 + 9*h1*h2^2 + 3*h1^2*h3 + 2*h2^3 + 6*h1*h2*h3]}
    a(n) = {my(v); v=[0, 1, 0, 0]; for(i=2, n, v=Next(v[1], v[2], v[3], v[4])); v[1]+v[4]+3*(v[2]+v[3])} \\ Pontus von Brömssen, Mar 14 2020
    
  • Python
    from itertools import islice
    def A297536_gen(): # generator of terms
        f,g,h,p = 0,1,0,0
        while True:
            yield f+3*(g+h)+p
            a, b = f+(g<<1), g+(h<<1)
            f,g,h,p = a*(f*(a+(b<<1)-h)+g**2), f*(p*a+b*(a+(g<<1))+2*h**2)+g**2*(g+(b<<1)), f*(g*(b+(h<<1))+3*h**2)+g*(g*((b<<1)+3*h)+(h<<1)**2)+p*(f*b+g*a), b*(g*(3*p+b+(h<<1))+h**2)
    A297536_list = list(islice(A297536_gen(),6)) # Chai Wah Wu, Jan 11 2024

Extensions

More terms from Pontus von Brömssen, Mar 14 2020

A321249 Number of maximal independent vertex sets in the n-Hanoi graph.

Original entry on oeis.org

3, 18, 3654, 32205621510, 22027184720660994230386220070258, 7047607950011539317413452449625581782178125646326877171638889103186225220299274232740598917544
Offset: 1

Views

Author

Eric W. Weisstein, Nov 01 2018

Keywords

Crossrefs

Cf. A288490 (independent vertex sets in the n-Hanoi graph).
Cf. A297536 (maximum independent vertex sets in the n-Hanoi graph).
Cf. A288839 (chromatic polynomials of the n-Hanoi graph).
Cf. A193233 (chromatic polynomial with highest coefficients first).
Cf. A137889 (directed Hamiltonian paths in the n-Hanoi graph).
Cf. A286017 (matchings in the n-Hanoi graph).
Cf. A193136 (spanning trees of the n-Hanoi graph).
Cf. A288796 (undirected paths in the n-Hanoi graph).

Programs

  • Python
    from itertools import product
    from math import prod
    from collections import defaultdict
    adjacent_ok=lambda u,v: not (u==v==2 or u+v<=1)
    apex_config_ok=lambda x: all(adjacent_ok(x[i][(i+1)%3],x[(i+1)%3][i]) for i in range(3))
    coeffs=defaultdict(lambda:defaultdict(int)) # Pre-computed coefficients to be used in the recursion for v(n).
    for x in product(product(range(3),repeat=3),repeat=3):
      # Each triple x[i] represents "almost maximal" independent sets (an apex node and its neighbors may all be outside the set) of one of the three subtriangles of H_n.
      # The elements of the triples represent the configurations at the apex nodes:
      #   0: the apex node is not in the set, nor any of its neighbors;
      #   1: the apex node is not in the set, but one of its neighbors is;
      #   2: the apex node is in the set.
      if x[0][0]<=x[1][1]<=x[2][2] and apex_config_ok(x):
        xsort=tuple(sorted(tuple(sorted(t)) for t in x))
        coeffs[(x[0][0],x[1][1],x[2][2])][xsort]+=1
    def v(n):
      if n==1:
        w={c:0 for c in coeffs}
        w[(0,0,0)]=w[(1,1,2)]=1
        return w
      v0=v(n-1)
      return {c:sum(coeffs[c][x]*prod(v0[k] for k in x) for x in coeffs[c]) for c in coeffs}
    def A321249(n):
      vn=v(n)
      return vn[(1,1,1)]+3*vn[(1,1,2)]+3*vn[(1,2,2)]+vn[(2,2,2)] # Pontus von Brömssen, Apr 10 2021

Extensions

More terms from Pontus von Brömssen, Mar 14 2020

A381320 Number of minimum vertex colorings in the n-Hanoi graph.

Original entry on oeis.org

6, 66, 85200, 183250434809856, 1823313150135576711941779566275453880631296, 1796015231442383417566549899388909415521140128662444489798112174969514654167314109511319978572879992886003172220405085684891648
Offset: 1

Views

Author

Eric W. Weisstein, Feb 21 2025

Keywords

Crossrefs

Cf. A193233 (coefficients of chromatic polynomial).
Cf. A288839 (coefficients of chromatic polynomial, highest powers first).

Formula

a(n) = P_n(3), where P_n is the chromatic polynomial given by A193233 or A288839.
Previous Showing 11-14 of 14 results.