cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 61 results. Next

A194439 Number of regions in the set of partitions of n that contain only one part.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297
Offset: 1

Views

Author

Omar E. Pol, Nov 28 2011

Keywords

Comments

It appears that this is 1 together with A000041. - Omar E. Pol, Nov 29 2011
For the definition of "region" see A206437. See also A186114 and A193870.

Examples

			For n = 5 the seven regions of 5 in nondecreasing order are the sets of positive integers of the rows as shown below:
   1;
   1, 2;
   1, 1, 3;
   0, 0, 0, 2;
   1, 1, 1, 2, 4;
   0, 0, 0, 0, 0, 3;
   1, 1, 1, 1, 1, 2, 5;
   ...
There are three regions that contain only one positive part, so a(5) = 3.
Note that in every column of the triangle the positive integers are also the parts of one of the partitions of 5.
		

Crossrefs

Formula

It appears that a(n) = A000041(n-2), if n >= 2. - Omar E. Pol, Nov 29 2011
It appears that a(n) = A000041(n) - A027336(n), if n >= 2. - Omar E. Pol, Nov 30 2011

Extensions

Definition clarified by Omar E. Pol, May 21 2021

A207779 Largest part plus the number of parts of the n-th region of the section model of partitions.

Original entry on oeis.org

2, 4, 6, 3, 9, 4, 12, 3, 6, 4, 17, 4, 7, 5, 22, 3, 6, 4, 10, 6, 5, 30, 4, 7, 5, 11, 4, 8, 6, 39, 3, 6, 4, 10, 6, 5, 15, 5, 9, 7, 6, 52, 4, 7, 5, 11, 4, 8, 6, 17, 6, 5, 11, 8, 7, 67, 3, 6, 4, 10, 6, 5, 15, 5, 9, 7, 6, 22, 4, 8, 6, 13, 5, 10, 8
Offset: 1

Views

Author

Omar E. Pol, Mar 08 2012

Keywords

Comments

Also semiperimeter of the n-th region of the geometric version of the section model of partitions. Note that a(n) is easily viewable as the sum of two perpendicular segments with a shared vertex. The horizontal segment has length A141285(n) and the vertical segment has length A194446(n). The difference between these two segments gives A194447(n). See also an illustration in the Links section. For the definition of "region" see A206437.
Also triangle read by rows: T(n,k) = largest part plus the number of parts of the k-th region of the last section of the set of partitions of n.

Examples

			Written as a triangle begins:
2;
4;
6;
3, 9;
4, 12;
3, 6, 4, 17;
4, 7, 5, 22;
3, 6, 4, 10, 6, 5, 30;
4, 7, 5, 11, 4, 8, 6, 39;
3, 6, 4, 10, 6, 5, 15, 5, 9, 7, 6, 52;
		

Crossrefs

Row n has length A187219(n). Last term of row n is A133041(n). Where record occur give A000041, n >= 1.

Formula

a(n) = A141285(n) + A194446(n).

A211009 Triangle read by rows: T(n,k) = number of cells in the k-column of the n-th region of j in the list of colexicographically ordered partitions of j, if 1<=n<=A000041(j), 1<=k<=A141285(n).

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 5, 1, 1, 1, 1, 1, 1, 2, 7, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 4, 11, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 15, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 7, 22
Offset: 1

Views

Author

Omar E. Pol, Oct 21 2012

Keywords

Comments

Also the finite sequence a(1)..a(r), where a(r) is a record in the sequence, is also a finite triangle read by rows: T(n,k) = number of cells in the k-column of the n-th region of the integer whose number of partitions is equal to a(r).
T(n,k) is also 1 plus the number of holes between T(n,k) and the previous member in the column k of triangle.
T(n,k) is also the height of the column mentioned in the definition, in a three-dimensional model of the set of partitions of j, in which the regions appear rotated 90 degrees and where the pivots are the largest part of every region (see A141285). For the definition of "region" see A206437. - Omar E. Pol, Feb 06 2014

Examples

			The irregular triangle begins:
1;
1, 2;
1, 1, 3;
1, 1;
1, 1, 2, 5;
1, 1, 1;
1, 1, 1, 2, 7;
1, 1;
1, 1, 2, 2;
1, 1, 1;
1, 1, 1, 2, 4, 11;
1, 1, 1;
1, 1, 1, 2, 2;
1, 1, 1, 1;
1, 1, 1, 1, 2, 4, 15;
1, 1;
1, 1, 2, 2;
1, 1, 1;
1, 1, 1, 2, 4, 4;
1, 1, 1, 1, 1;
1, 1, 1, 1;
1, 1, 1, 1, 2, 3, 7, 22;
...
From _Omar E. Pol_, Feb 06 2014: (Start)
Illustration of initial terms:
.    _
.   |_|
.    1
.      _
.    _|_|
.   |_ _|
.    1 2
.        _
.       |_|
.    _ _|_|
.   |_ _ _|
.    1 1 3
.    _ _
.   |_ _|
.    1 1
.          _
.         |_|
.         |_|
.        _|_|
.    _ _|_ _|
.   |_ _ _ _|
.    1 1 2 5
.
(End)
		

Crossrefs

Records give positive terms of A000041. Row n has length A141285(n). Row sums give A186412.

Extensions

Better definition from Omar E. Pol, Feb 06 2014

A194438 Triangle read by rows: T(n,k) is the number of regions of the set of partitions of n into k parts.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 3, 1, 1, 0, 1, 0, 1, 5, 2, 1, 0, 1, 0, 1, 0, 0, 0, 1, 7, 3, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 11, 4, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 15, 6, 1, 2, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Nov 28 2011

Keywords

Comments

For the definition of "region" see A206437. See also A186114 and A193870. - Omar E. Pol, May 21 2021

Examples

			Triangle begins:
   1;
   1,1;
   1,1,1;
   2,1,1,0,1;
   3,1,1,0,1,0,1;
   5,2,1,0,1,0,1,0,0,0,1;
   7,3,1,0,1,0,1,0,0,0,1,0,0,0,1;
  11,4,1,1,1,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1;
...
		

Crossrefs

Column 1 is A194439.
Row n has length A000041(n).
Row sums give A000041, n >= 1.

Extensions

Definition clarified by Omar E. Pol, May 21 2021

A182181 Total number of parts in the section model of partitions of A135010 with n regions.

Original entry on oeis.org

1, 3, 6, 7, 12, 13, 20, 21, 23, 24, 35, 36, 38, 39, 54, 55, 57, 58, 62, 63, 64, 86, 87, 89, 90, 94, 95, 97, 98, 128, 129, 131, 132, 136, 137, 138, 145, 146, 148, 149, 150, 192, 193, 195, 196, 200, 201, 203, 204, 212, 213, 214, 217, 218, 219, 275
Offset: 1

Views

Author

Omar E. Pol, Apr 23 2012

Keywords

Examples

			The first four regions of the section model of partitions are [1],[2, 1],[3, 1, 1],[2]. We can see that there are seven parts so a(4) = 7.
Written as a triangle begins:
    1;
    3;
    6;
    7,  12;
   13,  20;
   21,  23,  24,  35;
   36,  38,  39,  54;
   55,  57,  58,  62,  63,  64,  86;
   87,  89,  90,  94,  95,  97,  98, 128;
  129, 131, 132, 136, 137, 138, 145, 146, 148, 149, 150, 192;
  193, 195, 196, 200, 201, 203, 204, 212, 213, 214, 217, 218, 219, 275;
  ...
From _Omar E. Pol_, Oct 20 2014: (Start)
Illustration of initial terms:
.                                                _ _ _ _ _
.                                      _ _ _    |_ _ _    |
.                            _ _ _ _  |_ _ _|_  |_ _ _|_  |
.                    _ _    |_ _    | |_ _    | |_ _    | |
.            _ _ _  |_ _|_  |_ _|_  | |_ _|_  | |_ _|_  | |
.      _ _  |_ _  | |_ _  | |_ _  | | |_ _  | | |_ _  | | |
.  _  |_  | |_  | | |_  | | |_  | | | |_  | | | |_  | | | |
. |_| |_|_| |_|_|_| |_|_|_| |_|_|_|_| |_|_|_|_| |_|_|_|_|_|
.
.  1    3      6       7        12        13         20
.
.                                          _ _ _ _ _ _
.                             _ _ _       |_ _ _      |
.                _ _ _ _     |_ _ _|_     |_ _ _|_    |
.   _ _         |_ _    |    |_ _    |    |_ _    |   |
.  |_ _|_ _ _   |_ _|_ _|_   |_ _|_ _|_   |_ _|_ _|_  |
.  |_ _ _    |  |_ _ _    |  |_ _ _    |  |_ _ _    | |
.  |_ _ _|_  |  |_ _ _|_  |  |_ _ _|_  |  |_ _ _|_  | |
.  |_ _    | |  |_ _    | |  |_ _    | |  |_ _    | | |
.  |_ _|_  | |  |_ _|_  | |  |_ _|_  | |  |_ _|_  | | |
.  |_ _  | | |  |_ _  | | |  |_ _  | | |  |_ _  | | | |
.  |_  | | | |  |_  | | | |  |_  | | | |  |_  | | | | |
.  |_|_|_|_|_|  |_|_|_|_|_|  |_|_|_|_|_|  |_|_|_|_|_|_|
.
.       21           23           24            35
(End)
		

Crossrefs

Partial sums of A194446.
Row j has length A187219(j).
Right border gives A006128.
For the definition of "region" see A206437.

Programs

  • Mathematica
    lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0,2];
    reg = {}; l = {};
    For[j = 1, j <= 56, j++,
      mx = Max@lex[j][[j]]; AppendTo[l, mx];
      For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]];
      AppendTo[reg, j - i];
      ];
    Accumulate@reg  (* Robert Price, Apr 22 2020, revised Jul 25 2020 *)

Formula

a(A000041(n)) = A006128(n), n >= 1.
a(A000041(n)) = A182727(A000041(n)). - Omar E. Pol, May 24 2012

A194437 Triangle read by rows: T(n,k) = sum of parts in the k-th region of n.

Original entry on oeis.org

1, 1, 3, 1, 3, 5, 1, 3, 5, 2, 9, 1, 3, 5, 2, 9, 3, 12, 1, 3, 5, 2, 9, 3, 12, 2, 6, 3, 20, 1, 3, 5, 2, 9, 3, 12, 2, 6, 3, 20, 3, 7, 4, 25, 1, 3, 5, 2, 9, 3, 12, 2, 6, 3, 20, 3, 7, 4, 25, 2, 6, 3, 13, 5, 4, 38, 1, 3, 5, 2, 9, 3, 12, 2, 6, 3, 20, 3, 7
Offset: 1

Views

Author

Omar E. Pol, Nov 27 2011

Keywords

Examples

			Triangle begins:
1;
1,3;
1,3,5;
1,3,5,2,9;
1,3,5,2,9,3,12;
1,3,5,2,9,3,12,2,6,3,20;
1,3,5,2,9,3,12,2,6,3,20,3,7,4,25;
1,3,5,2,9,3,12,2,6,3,20,3,7,4,25,2,6,3,13,5,4,38;
...
Row n has length A000041(n). Row sums give A066186. Right border gives A046746. Records in every row give A046746. Rows converge to A186412.
		

Crossrefs

A210990 Total area of the shadows of the three views of the shell model of partitions with n regions.

Original entry on oeis.org

0, 3, 10, 21, 26, 44, 51, 75, 80, 92, 99, 136, 143, 157, 166, 213, 218, 230, 237, 260, 271, 280, 348, 355, 369, 378, 403, 410, 427, 438, 526, 531, 543, 550, 573, 584, 593, 631, 640, 659, 672, 683, 804, 811, 825, 834, 859, 866, 883, 894, 938, 949, 958
Offset: 0

Views

Author

Omar E. Pol, Apr 23 2012

Keywords

Comments

Each part is represented by a cuboid of sides 1 X 1 X k where k is the size of the part. For the definition of "regions of n" see A206437.

Examples

			For n = 11 the three views of the shell model of partitions with 11 regions look like this:
.
.   A182181(11) = 35            A182244(11) = 66
.
.   6                             * * * * * 6
.   3 3                      P    * * 3 * * 3
.   2   4                    a    * * * 4 * 2
.   2   2 2                  r    * 2 * 2 * 2
.   1       5                t    * * * * 5 1
.   1       2 3              i    * * 3 * 2 1
.   1       1   4            t    * * * 4 1 1
.   1       1   2 2          i    * 2 * 2 1 1
.   1       1   1   3        o    * * 3 1 1 1
.   1       1   1   1 2      n    * 2 1 1 1 1
.   1       1   1   1 1 1    s    1 1 1 1 1 1
. <------- Regions ------         ------------> N
.                            L
.                            a    1
.                            r    * 2
.                            g    * * 3
.                            e    * 2
.                            s    * * * 4
.                            t    * * 3
.                                 * * * * 5
.                            p    * 2
.                            a    * * * 4
.                            r    * * 3
.                            t    * * * * * 6
.                            s
.                               A182727(11) = 35
.
The areas of the shadows of the three views are A182244(11) = 66, A182181(11) = 35 and A182727(11) = 35, therefore the total area of the three shadows is 66+35+35 = 136, so a(11) = 136.
		

Crossrefs

Formula

a(n) = A182244(n) + A182727(n) + A182181(n), n >= 1.
a(A000041(n)) = 2*A006128(n) + A066186(n).

A220482 Triangle read by rows: T(j,k) in which row j lists the parts in nondecreasing order of the j-th region of the set of partitions of n, with 1<=j<=A000041(n).

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 4, 3, 1, 1, 1, 1, 1, 2, 5, 2, 2, 4, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 6, 3, 2, 5, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 7, 2, 2, 4, 3, 2, 2, 3, 6, 5, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 8
Offset: 1

Views

Author

Omar E. Pol, Jan 27 2013

Keywords

Comments

For the definition of "region" of the set of partitions of n see A206437.

Examples

			First 15 rows of the irregular triangle are
1;
1, 2;
1, 1, 3;
2;
1, 1, 1, 2, 4;
3;
1, 1, 1, 1, 1, 2, 5;
2;
2, 4;
3;
1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 6;
3;
2, 5;
4;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 7;
		

Crossrefs

Positive terms of A186114. Mirror of A206437.
Row j has length A194446(j). Row sums give A186412.

A194448 Number of parts > 1 in the n-th region of the shell model of partitions.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 1, 12, 1, 2, 1, 4, 1, 2, 1, 8, 1, 1, 3, 1, 1, 14, 1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 1, 12, 1, 2, 1, 4, 1, 2, 1, 1, 21, 1, 2, 1, 4, 1, 2
Offset: 1

Views

Author

Omar E. Pol, Dec 10 2011

Keywords

Comments

Also triangle read by rows: T(n,k) = number of parts > 1 in the k-th region of the last section of the set of partitions of n.

Examples

			Written as a triangle:
0;
1;
1;
1,2;
1,2;
1,2,1,4;
1,2,1,4;
1,2,1,4,1,1,7;
1,2,1,4,1,2,1,8;
1,2,1,4,1,1,7,1,2,1,1,12;
1,2,1,4,1,2,1,8,1,1,3,1,1,14;
1,2,1,4,1,1,7,1,2,1,1,12,1,2,1,4,1,2,1,1,21;
		

Crossrefs

A210991 Total area of the shadows of the three views of the shell model of partitions with n regions.

Original entry on oeis.org

0, 3, 9, 18, 21, 35, 39, 58, 61, 67, 71, 99, 103, 110, 115, 152, 155, 161, 165, 175, 181, 186, 238, 242, 249, 254, 265, 269, 277, 283, 352, 355, 361, 365, 375, 381, 386, 401, 406, 415, 422, 428, 522, 526, 533, 538, 549, 553, 561, 567, 584, 590, 595, 606
Offset: 0

Views

Author

Omar E. Pol, Apr 30 2012

Keywords

Comments

It appears that if n is a partition number A000041 then the rotated structure with n regions shows each row as a partition of k such that A000041(k) = n (see example).
For the definition of "regions of n" see A206437.

Examples

			For n = 11 the three views of the shell model of partitions with 11 regions look like this:
.
.     A182181(11) = 35           A210692(11) = 29
.
.   1                                       1
.   1                                       1
.   1                                       1
.   1                                       1
.   1       1                             1 1
.   1       1                             1 1
.   1       1   1                       1 1 1
.   2       1   1                       1 1 2
.   2       1   1   1                 1 1 1 2
.   3   2   2   2   1 1             1 1 2 2 3
.   6 3 4 2 5 3 4 2 3 2 1         1 2 3 4 5 6
. <------- Regions ------         ------------> N
.                            L
.                            a    1
.                            r    * 2
.                            g    * * 3
.                            e    * 2
.                            s    * * * 4
.                            t    * * 3
.                                 * * * * 5
.                            p    * 2
.                            a    * * * 4
.                            r    * * 3
.                            t    * * * * * 6
.                            s
.
.                                A182727(11) = 35
.
The areas of the shadows of the three views are A182181(11) = 35, A182727(11) = 35 and A210692(11) = 29, therefore the total area of the three shadows is 35+35+29 = 99, so a(11) = 99.
Since n = 11 is a partition number A000041 we can see that the rotated structure with 11 regions shows each row as a partition of 6 because A000041(6) = 11. See below:
.
.                      6
.                    3   3
.                  4       2
.                2   2       2
.              5               1
.            3   2               1
.          4       1               1
.        2   2       1               1
.      3       1       1               1
.    2   1       1       1               1
.  1   1   1       1       1               1
.
		

Crossrefs

Formula

a(n) = A182181(n) + A182727(n) + A210692(n).
a(A000041(n)) = 2*A006128(n) + A026905(n).
Previous Showing 21-30 of 61 results. Next