A211026
Number of segments needed to draw (on the infinite square grid) a diagram of regions and partitions of n.
Original entry on oeis.org
4, 6, 8, 12, 16, 24, 32, 46, 62, 86, 114, 156, 204, 272, 354, 464, 596, 772, 982, 1256, 1586, 2006, 2512, 3152, 3918, 4874, 6022, 7438, 9132, 11210, 13686, 16700, 20288, 24622, 29768, 35956, 43276, 52032, 62372, 74678, 89168, 106350
Offset: 1
Cf.
A000041,
A052810,
A135010,
A139582,
A141285,
A186412,
A186114,
A187219,
A193870,
A194446,
A194447,
A206437,
A211009
A228109
Height after n-th step of an infinite staircase which is the lower part of a structure whose upper part is the infinite Dyck path of A228110.
Original entry on oeis.org
0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 1, 0, -1, 0, -1, 0, 1, 2, 1, 2, 3, 4, 3, 4, 3, 2, 1, 0, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 5, 6, 5, 4, 5, 4, 3, 2, 1, 0, -1
Offset: 0
Illustration of initial terms (n = 1..53):
5
4 /
3 /\/\ /
2 / \ /\/
1 /\/\ /\/ \ /\/
0 /\ /\/ \ / \ /\/
-1 \/\/\/\/ \/\/ \/\/ \/\/
-2
The diagram shows the Dyck pack mentioned in A228110 together with the staircase illustrated above. The area of the n-th region is equal to A186412(n).
.
7...................................
. /\
5..................... / \ /\
. /\ / \ /\ / /
3........... / \ / /\/\ \ / \/ /
2...... /\ / \ /\/ / \ \ / /\/
1... /\ / \ /\/ /\/\ \ / /\/ \ \ /\/ /\/
0 /\/ \/ /\ \/ /\/ \ \/ / \ \/ /\/
-1 \/\/\/\/ \/\/ \/\/ \/\/
.
Region:
. 1 2 3 4 5 6 7 8 9 10
Cf.
A000041,
A006128,
A135010,
A138137,
A139582,
A141285,
A182699,
A182709,
A186412,
A194446,
A194447,
A193870,
A206437,
A207779,
A211009,
A211978,
A211992,
A220517,
A225600,
A225610,
A228110,
A229946.
A230440
Triangle read by rows in which row n lists A000041(n-1) 1's followed by the list of partitions of n that do not contain 1 as a part in colexicographic order.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 3, 2, 5, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 2, 3, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 5, 2, 4, 3, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 6, 2, 5, 3, 4, 4, 8
Offset: 1
Illustration of initial terms (row = 1..6). The table shows the six sections of the set of partitions of 6 in three ways. Note that before the dissection, the set of partitions was in colexicographic order, see A211992. More generally, in a master model, the six sections of the set of partitions of 6 also can be interpreted as the first six sections of the set of partitions of any integer >= 6.
---------------------------------------------------------
n j Diagram Parts Parts
---------------------------------------------------------
. _
1 1 |_| 1; 1;
. _
2 1 _| | 1, 1,
2 2 |_ _| 2; 2;
. _
3 1 | | 1, 1,
3 2 _ _| | 1, 1,
3 3 |_ _ _| 3; 3;
. _
4 1 | | 1, 1,
4 2 | | 1, 1,
4 3 _ _ _| | 1, 1,
4 4 |_ _| | 2,2, 2,2,
4 5 |_ _ _ _| 4; 4;
. _
5 1 | | 1, 1,
5 2 | | 1, 1,
5 3 | | 1, 1,
5 4 | | 1, 1,
5 5 _ _ _ _| | 1, 1,
5 6 |_ _ _| | 3,2, 3,2,
5 7 |_ _ _ _ _| 5; 5;
. _
6 1 | | 1, 1,
6 2 | | 1, 1,
6 3 | | 1, 1,
6 4 | | 1, 1,
6 5 | | 1, 1,
6 6 | | 1, 1,
6 7 _ _ _ _ _| | 1, 1,
6 8 |_ _| | | 2,2,2, 2,2,2,
6 9 |_ _ _ _| | 4,2, 4,2,
6 10 |_ _ _| | 3,3, 3,3,
6 11 |_ _ _ _ _ _| 6; 6;
...
Triangle begins:
[1];
[1],[2];
[1],[1],[3];
[1],[1],[1],[2,2],[4];
[1],[1],[1],[1],[1],[3,2],[5];
[1],[1],[1],[1],[1],[1],[1],[2,2,2],[4,2],[3,3],[6];
...
Cf.
A000041,
A135010,
A138121,
A141285,
A182703,
A187219,
A193870,
A194446,
A206437,
A207031,
A207034,
A207383,
A207379,
A211009.
A210966
Sum of all region numbers of all parts of the n-th region of the shell model of partitions.
Original entry on oeis.org
1, 4, 9, 4, 25, 6, 49, 8, 18, 10, 121, 12, 26, 14, 225, 16, 34, 18, 76, 20, 21, 484, 23, 48, 25, 104, 27, 56, 29, 900, 31, 64, 33, 136, 35, 36, 259, 38, 78, 40, 41, 1764, 43, 88, 45, 184, 47, 96, 49, 400, 51, 52, 159, 54, 55, 3136, 57, 116, 59, 240
Offset: 1
The first seven regions of the shell model of partitions (or the seven regions of 5) are [1], [2, 1], [3, 1, 1], [2], [4, 2, 1, 1, 1], [3], [5, 2, 1, 1, 1, 1, 1] therefore the "region numbers" are [1], [2, 2], [3, 3, 3], [4], [5, 5, 5, 5, 5], [6], [7, 7, 7, 7, 7, 7, 7]. So a(1)..a(7) give: 1, 4, 9, 4, 25, 6, 49.
Also written as an irregular triangle the sequence begins:
1;
4;
9;
4,25;
6,49;
8,18,10,121;
12,26,14,225;
16,34,18,76,20,21,484;
23,48,25,104,27,56,29,900;
31,64,33,136,35,36,259,38,78,40,41,1764;
43,88,45,184,47,96,49,400,51,52,159,54,55,3136;
A225596
Sum of largest parts of all partitions of n plus n. Also, total number of parts in all partitions of n plus n.
Original entry on oeis.org
0, 2, 5, 9, 16, 25, 41, 61, 94, 137, 202, 286, 411, 569, 794, 1083, 1479, 1982, 2662, 3517, 4650, 6073, 7921, 10229, 13198, 16876, 21548, 27321, 34573, 43482, 54593, 68166, 84959, 105399, 130496, 160911, 198050, 242849, 297239, 362626, 441586, 536145
Offset: 0
For n = 7 the sum of largest parts of all partitions of 7 plus 7 is (7+4+5+3+6+3+4+2+5+3+4+2+3+2+1) + 7 = 54 + 7 = 61. On the other hand the number of toothpicks in horizontal direction in the diagram of regions of the set of partitions of 7 is equal to 61, so a(7) = 61.
.
. Diagram of regions Horizontal
Partitions and partitions of 7 toothpicks
of 7
. _ _ _ _ _ _ _
7 |_ _ _ _ | 7
4+3 |_ _ _ _|_ | 4
5+2 |_ _ _ | | 5
3+2+2 |_ _ _|_ _|_ | 3
6+1 |_ _ _ | | 6
3+3+1 |_ _ _|_ | | 3
4+2+1 |_ _ | | | 4
2+2+2+1 |_ _|_ _|_ | | 2
5+1+1 |_ _ _ | | | 5
3+2+1+1 |_ _ _|_ | | | 3
4+1+1+1 |_ _ | | | | 4
2+2+1+1+1 |_ _|_ | | | | 2
3+1+1+1+1 |_ _ | | | | | 3
2+1+1+1+1+1 |_ | | | | | | 2
1+1+1+1+1+1+1 |_|_|_|_|_|_|_| 1
. 7
. _____
. Total 61
.
Cf.
A000041,
A006128,
A093694,
A135010,
A139250,
A141285,
A186114,
A194446,
A194447,
A206437,
A211978,
A220517,
A225600,
A225610.
A225598
Triangle read by rows: T(n,k) = sum of all parts of all regions of the set of partitions of n whose largest part is k.
Original entry on oeis.org
1, 1, 3, 1, 3, 5, 1, 5, 5, 9, 1, 5, 8, 9, 12, 1, 7, 11, 15, 12, 20, 1, 7, 14, 19, 19, 20, 25, 1, 9, 17, 29, 24, 33, 25, 38, 1, 9, 23, 33, 36, 42, 39, 38, 49, 1, 11, 26, 47, 46, 61, 49, 61, 49, 69, 1, 11, 32, 55, 63, 76, 70, 76, 76, 69, 87, 1, 13, 38, 73, 78, 110, 87, 111, 95, 108, 87, 123
Offset: 1
For n = 5 and k = 3 the set of partitions of 5 contains two regions whose largest part is 3, they are third region which contains three parts [3, 1, 1] and the sixth region which contains only one part [3]. Therefore the sum of all parts is 3 + 1 + 1 + 3 = 8, so T(5,3) = 8.
.
. Diagram Illustration of parts ending in column k:
. for n=5 k=1 k=2 k=3 k=4 k=5
. _ _ _ _ _ _ _ _ _ _
. |_ _ _ | _ _ _ |_ _ _ _ _|
. |_ _ _|_ | |_ _ _| _ _ _ _ |_ _|
. |_ _ | | _ _ |_ _ _ _| |_|
. |_ _|_ | | |_ _| _ _ _ |_ _| |_|
. |_ _ | | | _ _ |_ _ _| |_| |_|
. |_ | | | | _ |_ _| |_| |_| |_|
. |_|_|_|_|_| |_| |_| |_| |_| |_|
.
k = 1 2 3 4 5
.
The 5th row lists: 1 5 8 9 12
.
Triangle begins:
1;
1, 3;
1, 3, 5;
1, 5, 5, 9;
1, 5, 8, 9, 12;
1, 7, 11, 15, 12, 20;
1, 7, 14, 19, 19, 20, 25;
1, 9, 17, 29, 24, 33, 25, 38;
1, 9, 23, 33, 36, 42, 39, 38, 49;
1, 11, 26, 47, 46, 61, 49, 61, 49, 69;
1, 11, 32, 55, 63, 76, 70, 76, 76, 69, 87;
1, 13, 38, 73, 78, 110, 87, 111, 95, 108, 87, 123;
Cf.
A000041,
A066186,
A135010,
A141285,
A186114,
A186412,
A187219,
A194446,
A206437,
A207779,
A211978,
A225597,
A225600,
A225610.
A228368
Difference between the n-th element of the ruler function and the highest power of 2 dividing n.
Original entry on oeis.org
0, 0, 0, -1, 0, 0, 0, -4, 0, 0, 0, -1, 0, 0, 0, -11, 0, 0, 0, -1, 0, 0, 0, -4, 0, 0, 0, -1, 0, 0, 0, -26, 0, 0, 0, -1, 0, 0, 0, -4, 0, 0, 0, -1, 0, 0, 0, -11, 0, 0, 0, -1, 0, 0, 0, -4, 0, 0, 0, -1, 0, 0, 0, -57, 0, 0, 0, -1, 0, 0, 0, -4, 0, 0, 0, -1, 0, 0, 0, -11, 0, 0, 0, -1, 0, 0, 0, -4, 0, 0, 0, -1, 0, 0, 0, -26
Offset: 1
Illustration of initial terms (n = 1..16):
-----------------------------------------------
. Largest Number of
. Diagram of part of parts of
. compositions region n region n
-----------------------------------------------
n A001511(n) A006519(n) a(n)
-----------------------------------------------
.
1 _| | | | | 1 1 0
2 _ _| | | | 2 2 0
3 _| | | | 1 1 0
4 _ _ _| | | 3 4 -1
5 _| | | | 1 1 0
6 _ _| | | 2 2 0
7 _| | | 1 1 0
8 _ _ _ _| | 4 8 -4
9 _| | | | 1 1 0
10 _ _| | | 2 2 0
11 _| | | 1 1 0
12 _ _ _| | 3 4 -1
13 _| | | 1 1 0
14 _ _| | 2 2 0
15 _| | 1 1 0
16 _ _ _ _ _| 5 16 -11
.
Written as an array read by rows with four columns the first three columns contain only zeros.
0, 0, 0, -1;
0, 0, 0, -4;
0, 0, 0, -1;
0, 0, 0, -11;
0, 0, 0, -1;
0, 0, 0, -4;
0, 0, 0, -1;
0, 0, 0, -26;
...
Written as a triangle T(j,k) the sequence begins:
0;
0;
0,-1;
0,0,0,-4;
0,0,0,-1,0,0,0,-11;
0,0,0,-1,0,0,0,-4,0,0,0,-1,0,0,0,-26;
0,0,0,-1,0,0,0,-4,0,0,0,-1,0,0,0,-11,0,0,0,-1,0,0,0,-4,0, 0,0,-1,0,0,0,-57;
...
Row lengths give A011782.
A299473
a(n) = 3*p(n), where p(n) is the number of partitions of n.
Original entry on oeis.org
3, 3, 6, 9, 15, 21, 33, 45, 66, 90, 126, 168, 231, 303, 405, 528, 693, 891, 1155, 1470, 1881, 2376, 3006, 3765, 4725, 5874, 7308, 9030, 11154, 13695, 16812, 20526, 25047, 30429, 36930, 44649, 53931, 64911, 78045, 93555, 112014, 133749, 159522, 189783, 225525, 267402, 316674, 374262, 441819, 520575, 612678
Offset: 0
Construction of a minimalist version of a modular table of partitions in which a(n) is the number of vertices of the diagram after n-th stage (n = 1..6):
-----------------------------------------------------------------------------------
n.........: 1 2 3 4 5 6 (stage)
A000041(n): 1 2 3 5 7 11 (open regions)
A139582(n): 2 4 6 10 14 22 (line segments)
a(n)......: 3 6 9 15 21 33 (vertices)
-----------------------------------------------------------------------------------
r p(n)
-----------------------------------------------------------------------------------
.
1 .... 1 .... _| _| | _| | | _| | | | _| | | | | _| | | | | |
2 .... 2 ......... _ _| _ _| | _ _| | | _ _| | | | _ _| | | | |
3 .... 3 ................ _ _ _| _ _ _| | _ _ _| | | _ _ _| | | |
4 _ _| | _ _| | | _ _| | | |
5 .... 5 ......................... _ _ _ _| _ _ _ _| | _ _ _ _| | |
6 _ _ _| | _ _ _| | |
7 .... 7 .................................... _ _ _ _ _| _ _ _ _ _| |
8 _ _| | |
9 _ _ _ _| |
10 _ _ _| |
11 .. 11 ................................................. _ _ _ _ _ _|
.
The r-th horizontal line segment has length A141285(r).
The r-th vertical line segment has length A194446(r).
An infinite diagram is a minimalist table of all partitions of all positive integers.
Cf.
A135010,
A141285,
A182181,
A186114,
A193870,
A194446,
A194447,
A206437,
A207779,
A220482,
A220517,
A273140,
A278355,
A278602,
A299475.
A299774
Irregular triangle read by rows in which row n lists the indices of the partitions into equal parts in the list of colexicographically ordered partitions of n.
Original entry on oeis.org
1, 1, 2, 1, 3, 1, 4, 5, 1, 7, 1, 8, 10, 11, 1, 15, 1, 16, 21, 22, 1, 27, 30, 1, 31, 41, 42, 1, 56, 1, 57, 69, 73, 76, 77, 1, 101, 1, 102, 134, 135, 1, 160, 172, 176, 1, 177, 221, 230, 231, 1, 297, 1, 298, 353, 380, 384, 385, 1, 490, 1, 491, 604, 615, 626, 627, 1
Offset: 1
Triangle begins:
1;
1, 2;
1, 3;
1, 4, 5;
1, 7;
1, 8, 10, 11;
1, 15;
1, 16, 21, 22;
1, 27, 30;
1, 31, 41, 42;
1, 56;
1, 57, 69, 73, 76, 77;
1, 101;
1, 102, 134, 135;
1, 160, 172, 176;
...
For n = 6 the partitions of 6 into equal parts are [1, 1, 1, 1, 1, 1], [2, 2, 2], [3, 3] and [6]. Then we have that in the list of colexicographically ordered partitions of 6 these partitions are in the rows 1, 8, 10 and 11 respectively as shown below, so the 6th row of the triangle is [1, 8, 10, 11].
-------------------------------------------------------------
p Diagram Partitions of 6
-------------------------------------------------------------
_ _ _ _ _ _
1 |_| | | | | | [1, 1, 1, 1, 1, 1] <--- equal parts
2 |_ _| | | | | [2, 1, 1, 1, 1]
3 |_ _ _| | | | [3, 1, 1, 1]
4 |_ _| | | | [2, 2, 1, 1]
5 |_ _ _ _| | | [4, 1, 1]
6 |_ _ _| | | [3, 2, 1]
7 |_ _ _ _ _| | [5, 1]
8 |_ _| | | [2, 2, 2] <--- equal parts
9 |_ _ _ _| | [4, 2]
10 |_ _ _| | [3, 3] <--- equal parts
11 |_ _ _ _ _ _| [6] <--- equal parts
.
Right border gives
A000041, n >= 1.
Cf.
A211992 (partitions in colexicographic order).
Cf.
A027750,
A135010,
A141285,
A186114,
A186412,
A193870,
A194446,
A194447,
A211978,
A206437,
A299474,
A299475,
A299773,
A299775.
-
row(n) = {if(n == 1, return([1])); my(nd = numdiv(n), res = vector(nd)); res[1] = 1; res[nd] = numbpart(n); if(nd > 2, t = nd - 1; p = vecsort(partitions(n)); forstep(i = #p - 1, 2, -1, if(p[i][1] == p[i][#p[i]], res[t] = i; t--; if(t==1, return(res)))), return(res))} \\ David A. Corneth, Aug 17 2018
A194449
Largest part minus the number of parts > 1 in the n-th region of the set of partitions of j, if 1 <= n <= A000041(j).
Original entry on oeis.org
1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 2, 2, 3, 3, 3, 1, 2, 2, 2, 4, 3, 1, 2, 3, 3, 3, 2, 4, 4, 1, 1, 2, 2, 2, 4, 3, 1, 3, 5, 5, 4, -2, 2, 3, 3, 3, 2, 4, 4, 1, 4, 3, 5, 6, 5, -3, 1, 2, 2, 2, 4, 3, 1, 3, 5, 5, 4, -2, 2, 4, 4, 5, 3, 6, 6, 5, -9
Offset: 1
The 7th region of the shell model of partitions is [5, 2, 1, 1, 1, 1, 1]. The largest part is 5 and the number of parts > 1 is 2, so a(7) = 5 - 2 = 3 (see an illustration in the link section).
Written as an irregular triangle T(j,k) begins:
1;
1;
2;
1,2;
2,3;
1,2,2,2;
2,3,3,3;
1,2,2,2,4,3,1;
2,3,3,3,2,4,4,1;
1,2,2,2,4,3,1,3,5,5,4,-2;
2,3,3,3,2,4,4,1,4,3,5,6,5,-3;
1,2,2,2,4,3,1,3,5,5,4,-2,2,4,4,5,3,6,6,5,-9;
Cf.
A000041,
A135010,
A138121,
A138137,
A138879,
A186114,
A186412,
A193870,
A194436,
A194437,
A194438,
A194439,
A194446,
A194447,
A206437.
Comments