cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A195146 Concentric 16-gonal numbers.

Original entry on oeis.org

0, 1, 16, 33, 64, 97, 144, 193, 256, 321, 400, 481, 576, 673, 784, 897, 1024, 1153, 1296, 1441, 1600, 1761, 1936, 2113, 2304, 2497, 2704, 2913, 3136, 3361, 3600, 3841, 4096, 4353, 4624, 4897, 5184, 5473, 5776, 6081, 6400, 6721, 7056, 7393, 7744, 8097, 8464
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Concentric hexadecagonal numbers or concentric hexakaidecagonal numbers.
Sequence found by reading the line from 0, in the direction 0, 16, ..., and the same line from 1, in the direction 1, 33, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. Main axis, perpendicular to A033996 in the same spiral.

Crossrefs

Programs

Formula

From Vincenzo Librandi, Sep 27 2011: (Start)
a(n) = (8*n^2 + 3*(-1)^n - 3)/2;
a(n) = -a(n-1) + 8*n^2 - 8*n + 1. (End)
G.f. -x*(1+14*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
Sum_{n>=1} 1/a(n) = Pi^2/96 + tan(sqrt(3)*Pi/4)*Pi/(8*sqrt(3)). - Amiram Eldar, Jan 16 2023

A195147 Concentric 18-gonal numbers.

Original entry on oeis.org

0, 1, 18, 37, 72, 109, 162, 217, 288, 361, 450, 541, 648, 757, 882, 1009, 1152, 1297, 1458, 1621, 1800, 1981, 2178, 2377, 2592, 2809, 3042, 3277, 3528, 3781, 4050, 4321, 4608, 4897, 5202, 5509, 5832, 6157, 6498, 6841, 7200, 7561, 7938, 8317, 8712, 9109
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Concentric octadecagonal numbers or concentric octakaidecagonal numbers.
Sequence found by reading the line from 0, in the direction 0, 18, ..., and the same line from 1, in the direction 1, 37, ..., in the square spiral whose vertices are the generalized hendecagonal numbers A195160. Main axis, perpendicular to A027468 in the same spiral.

Crossrefs

A195321 and A195316 interleaved.
Cf. A032527, A195047, A195048. Column 18 of A195040. - Omar E. Pol, Sep 29 2011

Programs

Formula

G.f.: -x*(1+16*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
From Vincenzo Librandi, Sep 27 2011: (Start)
a(n) = (18*n^2 + 7*(-1)^n - 7)/4;
a(n) = -a(n-1) + 9*n^2 - 9*n + 1. (End)
Sum_{n>=1} 1/a(n) = Pi^2/108 + tan(sqrt(7)*Pi/6)*Pi/(6*sqrt(7)). - Amiram Eldar, Jan 17 2023

A195148 Concentric 20-gonal numbers.

Original entry on oeis.org

0, 1, 20, 41, 80, 121, 180, 241, 320, 401, 500, 601, 720, 841, 980, 1121, 1280, 1441, 1620, 1801, 2000, 2201, 2420, 2641, 2880, 3121, 3380, 3641, 3920, 4201, 4500, 4801, 5120, 5441, 5780, 6121, 6480, 6841, 7220, 7601, 8000, 8401, 8820, 9241, 9680, 10121
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Concentric icosagonal numbers.
Sequence found by reading the line from 0, in the direction 0, 20, ..., and the same line from 1, in the direction 1, 41, ..., in the square spiral whose vertices are the generalized dodecagonal numbers A195162. Main axis, perpendicular to A124080 in the same spiral.

Crossrefs

A195322 and A195317 interleaved.
Cf. A032527, A195048, A195049. Column 20 of A195040. - Omar E. Pol, Sep 29 2011

Programs

Formula

From Vincenzo Librandi, Sep 27 2011: (Start)
a(n) = 5*n^2 + 2*(-1)^n-2;
a(n) = -a(n-1) + 10*n^2 - 10*n + 1. (End)
G.f.: x*(1+18*x+x^2)/((1+x)*(1-x)^3). - Bruno Berselli, Sep 27 2011
Sum_{n>=1} 1/a(n) = Pi^2/120 + tan(Pi/sqrt(5))*Pi/(8*sqrt(5)). - Amiram Eldar, Jan 17 2023

A195042 Concentric 9-gonal numbers.

Original entry on oeis.org

0, 1, 9, 19, 36, 55, 81, 109, 144, 181, 225, 271, 324, 379, 441, 505, 576, 649, 729, 811, 900, 991, 1089, 1189, 1296, 1405, 1521, 1639, 1764, 1891, 2025, 2161, 2304, 2449, 2601, 2755, 2916, 3079, 3249, 3421, 3600, 3781, 3969, 4159, 4356, 4555, 4761, 4969, 5184, 5401, 5625
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Comments

Also concentric enneagonal numbers or concentric nonagonal numbers.
A016766 and A069131 interleaved.
Partial sums of A056020. - Reinhard Zumkeller, Jan 07 2012

Crossrefs

Programs

  • Haskell
    a195042 n = a195042_list !! n
    a195042_list = scanl (+) 0 a056020_list
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [(9*n^2+5/2*((-1)^n-1))/4: n in [0..50]]; // Vincenzo Librandi, Sep 29 2011
    
  • Mathematica
    LinearRecurrence[{2,0,-2,1},{0,1,9,19},60] (* Harvey P. Dale, Nov 24 2019 *)
  • PARI
    a(n)=(9*n^2+5/2*((-1)^n-1))/4 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = (9*n^2 + 5/2*((-1)^n - 1))/4.
From R. J. Mathar, Sep 28 2011: (Start)
G.f.: -x*(1+7*x+x^2) / ( (1+x)*(x-1)^3 ).
a(n) + a(n+1) = A060544(n+1). (End)
Sum_{n>=1} 1/a(n) = Pi^2/54 + tan(sqrt(5)*Pi/6)*Pi/(3*sqrt(5)). - Amiram Eldar, Jan 16 2023

A195041 Concentric heptagonal numbers.

Original entry on oeis.org

0, 1, 7, 15, 28, 43, 63, 85, 112, 141, 175, 211, 252, 295, 343, 393, 448, 505, 567, 631, 700, 771, 847, 925, 1008, 1093, 1183, 1275, 1372, 1471, 1575, 1681, 1792, 1905, 2023, 2143, 2268, 2395, 2527, 2661, 2800, 2941, 3087, 3235, 3388, 3543
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Comments

A033582 and A069127 interleaved.
Partial sums of A047336. - Reinhard Zumkeller, Jan 07 2012

Crossrefs

Programs

  • Haskell
    a195041 n = a195041_list !! n
    a195041_list = scanl (+) 0 a047336_list
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [7*n^2/4+3*((-1)^n-1)/8: n in [0..50]]; // Vincenzo Librandi, Sep 29 2011
    
  • Mathematica
    CoefficientList[Series[-((x (1+5 x+x^2))/((-1+x)^3 (1+x))),{x,0,80}],x] (* or *) LinearRecurrence[{2,0,-2,1},{0,1,7,15},80] (* Harvey P. Dale, Jan 18 2021 *)
  • PARI
    a(n)=7*n^2\4 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = 7*n^2/4 + 3*((-1)^n - 1)/8.
From R. J. Mathar, Sep 28 2011: (Start)
G.f.: -x*(1+5*x+x^2) / ( (1+x)*(x-1)^3 ).
a(n) + a(n+1) = A069099(n+1). (End)
a(n) = n^2 + floor(3*n^2/4). - Bruno Berselli, Aug 08 2013
Sum_{n>=1} 1/a(n) = Pi^2/42 + tan(sqrt(3/7)*Pi/2)*Pi/sqrt(21). - Amiram Eldar, Jan 16 2023

A195043 Concentric 11-gonal numbers.

Original entry on oeis.org

0, 1, 11, 23, 44, 67, 99, 133, 176, 221, 275, 331, 396, 463, 539, 617, 704, 793, 891, 991, 1100, 1211, 1331, 1453, 1584, 1717, 1859, 2003, 2156, 2311, 2475, 2641, 2816, 2993, 3179, 3367, 3564, 3763, 3971, 4181, 4400, 4621, 4851, 5083, 5324, 5567
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Comments

Also concentric hendecagonal numbers. A033584 and A069173 interleaved.
Partial sums of A175885. - Reinhard Zumkeller, Jan 07 2012

Crossrefs

Programs

  • Haskell
    a195043 n = a195043_list !! n
    a195043_list = scanl (+) 0 a175885_list
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [11*n^2/4+7*((-1)^n-1)/8: n in [0..50]]; // Vincenzo Librandi, Sep 30 2011
    
  • Mathematica
    LinearRecurrence[{2,0,-2,1},{0,1,11,23},50] (* Harvey P. Dale, May 20 2019 *)
  • PARI
    Vec(-x*(x^2+9*x+1)/((x-1)^3*(x+1)) + O(x^100)) \\ Colin Barker, Sep 15 2013

Formula

a(n) = 11*n^2/4 + 7*((-1)^n - 1)/8.
a(n) = -a(n-1) + A069125(n). - Vincenzo Librandi, Sep 30 2011
From Colin Barker, Sep 15 2013: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: -x*(x^2+9*x+1) / ((x-1)^3*(x+1)). (End)
Sum_{n>=1} 1/a(n) = Pi^2/66 + tan(sqrt(7/11)*Pi/2)*Pi/sqrt(77). - Amiram Eldar, Jan 16 2023

A195045 Concentric 13-gonal numbers.

Original entry on oeis.org

0, 1, 13, 27, 52, 79, 117, 157, 208, 261, 325, 391, 468, 547, 637, 729, 832, 937, 1053, 1171, 1300, 1431, 1573, 1717, 1872, 2029, 2197, 2367, 2548, 2731, 2925, 3121, 3328, 3537, 3757, 3979, 4212, 4447, 4693, 4941, 5200, 5461, 5733, 6007, 6292, 6579, 6877, 7177, 7488, 7801, 8125
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Comments

Also concentric tridecagonal numbers or concentric triskaidecagonal numbers.
Partial sums of A175886. - Reinhard Zumkeller, Jan 07 2012

Crossrefs

Programs

Formula

a(n) = 13*n^2/4+9*((-1)^n-1)/8.
From R. J. Mathar, Sep 28 2011: (Start)
G.f.: -x*(1+11*x+x^2) / ( (1+x)*(x-1)^3 ).
a(n)+a(n+1) = A069126(n+1). (End)
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n>3. - Wesley Ivan Hurt, Nov 22 2015
Sum_{n>=1} 1/a(n) = Pi^2/78 + tan(3*Pi/(2*sqrt(13)))*Pi/(3*sqrt(13)). - Amiram Eldar, Jan 16 2023

A195048 Concentric 19-gonal numbers.

Original entry on oeis.org

0, 1, 19, 39, 76, 115, 171, 229, 304, 381, 475, 571, 684, 799, 931, 1065, 1216, 1369, 1539, 1711, 1900, 2091, 2299, 2509, 2736, 2965, 3211, 3459, 3724, 3991, 4275, 4561, 4864, 5169, 5491, 5815, 6156, 6499, 6859, 7221, 7600, 7981, 8379, 8779, 9196
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Comments

Also concentric enneadecagonal numbers.

Crossrefs

Programs

Formula

a(n) = (19/4)*n^2 + (15/8)*((-1)^n - 1).
From Colin Barker, Sep 16 2012: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: x*(1 + 17*x + x^2)/((1-x)^3*(1+x)). (End)
Sum_{n>=1} 1/a(n) = Pi^2/114 + tan(sqrt(15/19)*Pi/2)*Pi/sqrt(285). - Amiram Eldar, Jan 17 2023

A195049 Concentric 21-gonal numbers.

Original entry on oeis.org

0, 1, 21, 43, 84, 127, 189, 253, 336, 421, 525, 631, 756, 883, 1029, 1177, 1344, 1513, 1701, 1891, 2100, 2311, 2541, 2773, 3024, 3277, 3549, 3823, 4116, 4411, 4725, 5041, 5376, 5713, 6069, 6427, 6804, 7183, 7581, 7981, 8400, 8821, 9261, 9703, 10164
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Crossrefs

Programs

Formula

a(n) = 21*n^2/4 + 17*((-1)^n-1)/8.
From Colin Barker, Sep 16 2012: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: x*(1+19*x+x^2)/((1-x)^3*(1+x)). (End)
Sum_{n>=1} 1/a(n) = Pi^2/126 + tan(sqrt(17/21)*Pi/2)*Pi/sqrt(357). - Amiram Eldar, Jan 17 2023

A195046 Concentric 15-gonal numbers.

Original entry on oeis.org

0, 1, 15, 31, 60, 91, 135, 181, 240, 301, 375, 451, 540, 631, 735, 841, 960, 1081, 1215, 1351, 1500, 1651, 1815, 1981, 2160, 2341, 2535, 2731, 2940, 3151, 3375, 3601, 3840, 4081, 4335, 4591, 4860, 5131, 5415, 5701, 6000, 6301, 6615, 6931, 7260, 7591
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[15n^2/4+11((-1)^n-1)/8,{n,0,50}] (* or *) LinearRecurrence[ {2,0,-2,1},{0,1,15,31},50] (* Harvey P. Dale, Feb 23 2012 *)
  • PARI
    a(n)=15*n^2/4+11*((-1)^n-1)/8 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = 15*n^2/4+11*((-1)^n-1)/8.
From Harvey P. Dale, Feb 23 2012: (Start)
a(0)=0, a(1)=1, a(2)=15, a(3)=31, a(n)=2*a(n-1)-2*a(n-3)+a(n-4).
G.f.: -((x*(1+x*(13+x)))/((-1+x)^3*(1+x))). (End)
Sum_{n>=1} 1/a(n) = Pi^2/90 + tan(sqrt(11/15)*Pi/2)*Pi/sqrt(165). - Amiram Eldar, Jan 16 2023

Extensions

a(1)=1 added by Harvey P. Dale, Feb 23 2012
Previous Showing 11-20 of 23 results. Next