cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A195042 Concentric 9-gonal numbers.

Original entry on oeis.org

0, 1, 9, 19, 36, 55, 81, 109, 144, 181, 225, 271, 324, 379, 441, 505, 576, 649, 729, 811, 900, 991, 1089, 1189, 1296, 1405, 1521, 1639, 1764, 1891, 2025, 2161, 2304, 2449, 2601, 2755, 2916, 3079, 3249, 3421, 3600, 3781, 3969, 4159, 4356, 4555, 4761, 4969, 5184, 5401, 5625
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Comments

Also concentric enneagonal numbers or concentric nonagonal numbers.
A016766 and A069131 interleaved.
Partial sums of A056020. - Reinhard Zumkeller, Jan 07 2012

Crossrefs

Programs

  • Haskell
    a195042 n = a195042_list !! n
    a195042_list = scanl (+) 0 a056020_list
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [(9*n^2+5/2*((-1)^n-1))/4: n in [0..50]]; // Vincenzo Librandi, Sep 29 2011
    
  • Mathematica
    LinearRecurrence[{2,0,-2,1},{0,1,9,19},60] (* Harvey P. Dale, Nov 24 2019 *)
  • PARI
    a(n)=(9*n^2+5/2*((-1)^n-1))/4 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = (9*n^2 + 5/2*((-1)^n - 1))/4.
From R. J. Mathar, Sep 28 2011: (Start)
G.f.: -x*(1+7*x+x^2) / ( (1+x)*(x-1)^3 ).
a(n) + a(n+1) = A060544(n+1). (End)
Sum_{n>=1} 1/a(n) = Pi^2/54 + tan(sqrt(5)*Pi/6)*Pi/(3*sqrt(5)). - Amiram Eldar, Jan 16 2023

A195043 Concentric 11-gonal numbers.

Original entry on oeis.org

0, 1, 11, 23, 44, 67, 99, 133, 176, 221, 275, 331, 396, 463, 539, 617, 704, 793, 891, 991, 1100, 1211, 1331, 1453, 1584, 1717, 1859, 2003, 2156, 2311, 2475, 2641, 2816, 2993, 3179, 3367, 3564, 3763, 3971, 4181, 4400, 4621, 4851, 5083, 5324, 5567
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Comments

Also concentric hendecagonal numbers. A033584 and A069173 interleaved.
Partial sums of A175885. - Reinhard Zumkeller, Jan 07 2012

Crossrefs

Programs

  • Haskell
    a195043 n = a195043_list !! n
    a195043_list = scanl (+) 0 a175885_list
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [11*n^2/4+7*((-1)^n-1)/8: n in [0..50]]; // Vincenzo Librandi, Sep 30 2011
    
  • Mathematica
    LinearRecurrence[{2,0,-2,1},{0,1,11,23},50] (* Harvey P. Dale, May 20 2019 *)
  • PARI
    Vec(-x*(x^2+9*x+1)/((x-1)^3*(x+1)) + O(x^100)) \\ Colin Barker, Sep 15 2013

Formula

a(n) = 11*n^2/4 + 7*((-1)^n - 1)/8.
a(n) = -a(n-1) + A069125(n). - Vincenzo Librandi, Sep 30 2011
From Colin Barker, Sep 15 2013: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: -x*(x^2+9*x+1) / ((x-1)^3*(x+1)). (End)
Sum_{n>=1} 1/a(n) = Pi^2/66 + tan(sqrt(7/11)*Pi/2)*Pi/sqrt(77). - Amiram Eldar, Jan 16 2023

A270693 Alternating sum of centered 25-gonal numbers.

Original entry on oeis.org

1, -25, 51, -100, 151, -225, 301, -400, 501, -625, 751, -900, 1051, -1225, 1401, -1600, 1801, -2025, 2251, -2500, 2751, -3025, 3301, -3600, 3901, -4225, 4551, -4900, 5251, -5625, 6001, -6400, 6801, -7225, 7651, -8100, 8551, -9025, 9501, -10000, 10501
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 21 2016

Keywords

Comments

The absolute value alternating sum of centered k-gonal numbers gives concentric k-gonal numbers.
More generally, the ordinary generating function for the alternating sum of centered k-gonal numbers is (1 - (k - 2)*x + x^2)/((1 - x)*(1 + x)^3).

Crossrefs

Programs

  • Magma
    [((-1)^n*(50*n^2 + 100*n + 29) - 21)/8 : n in [0..40]]; // Wesley Ivan Hurt, Mar 21 2016
  • Maple
    A270693:=n->((-1)^n*(50*n^2 + 100*n + 29) - 21)/8: seq(A270693(n), n=0..100); # Wesley Ivan Hurt, Sep 18 2017
  • Mathematica
    LinearRecurrence[{-2, 0, 2, 1}, {1, -25, 51, -100}, 41]
    Table[((-1)^n (50 n^2 + 100 n + 29) - 21)/8, {n, 0, 40}]
  • PARI
    x='x+O('x^100); Vec((1-23*x+x^2)/((1-x)*(1+x)^3)) \\ Altug Alkan, Mar 21 2016
    

Formula

G.f.: (1 - 23*x + x^2)/((1 - x)*(1 + x)^3).
E.g.f.: (1/8)*(-21*exp(x) + (29 - 150*x + 50*x^2)*exp(-x)).
a(n) = -2*a(n-1) + 2*a(n-3) + a(n-4).
a(n) = ((-1)^n*(50*n^2 + 100*n + 29) - 21)/8.
Previous Showing 11-13 of 13 results.