cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 63 results. Next

A195486 Decimal expansion of normalized Philo sum, Philo(ABC,G), where G=centroid of the sqrt(2),sqrt(5),sqrt(7) right triangle ABC.

Original entry on oeis.org

6, 2, 0, 3, 3, 2, 2, 7, 2, 6, 5, 3, 0, 2, 5, 8, 3, 8, 0, 5, 5, 6, 8, 6, 8, 3, 7, 2, 0, 6, 0, 7, 6, 8, 8, 6, 4, 8, 3, 6, 1, 3, 4, 8, 2, 5, 4, 2, 4, 8, 1, 9, 1, 4, 6, 1, 8, 9, 3, 2, 4, 2, 5, 0, 2, 3, 7, 3, 1, 4, 7, 9, 0, 4, 8, 7, 0, 3, 3, 4, 1, 5, 9, 1, 5, 2, 4, 7, 6, 8, 7, 4, 2, 0, 1, 3, 7, 2, 0, 9
Offset: 0

Views

Author

Clark Kimberling, Sep 19 2011

Keywords

Comments

See A195304 for definitions and a general discussion.

Examples

			Philo(ABC,G)=.62033227265302583805568683720607688648361...
		

Crossrefs

Cf. A195304.

Programs

  • Mathematica
    a = Sqrt[2]; b = Sqrt[5]; h = 2 a/3; k = b/3;
    f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f1 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (A) A195483 *)
    f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f2 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (B) A195484 *)
    f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f3 = (f[t])^(1/2) /. Part[s, 1]
    RealDigits[%, 10, 100] (* (C) A195485 *)
    c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
    RealDigits[%, 10, 100] (* Philo(ABC,G) A195486 *)

A195487 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(sqrt(7),3,4).

Original entry on oeis.org

1, 6, 4, 8, 0, 4, 0, 7, 3, 4, 5, 9, 5, 5, 1, 8, 8, 1, 2, 3, 3, 0, 7, 4, 0, 7, 0, 0, 9, 4, 8, 4, 8, 8, 9, 2, 2, 2, 3, 4, 2, 5, 1, 2, 5, 1, 9, 9, 2, 0, 3, 5, 7, 8, 6, 0, 3, 5, 7, 3, 9, 0, 9, 3, 4, 3, 2, 9, 9, 6, 6, 9, 6, 6, 4, 8, 2, 3, 6, 9, 4, 9, 7, 1, 6, 9, 3, 2, 4, 3, 7, 6, 2, 1, 9, 6, 0, 1, 1, 7
Offset: 1

Views

Author

Clark Kimberling, Sep 19 2011

Keywords

Comments

See A195304 for definitions and a general discussion.

Examples

			(A)=1.648040734595518812330740700...
		

Crossrefs

Programs

  • Mathematica
    a = Sqrt[7]; b = 3; h = 2 a/3; k = b/3;
    f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f1 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (A) A195487 *)
    f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f2 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (B) A195488 *)
    f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f3 = (f[t])^(1/2) /. Part[s, 1]
    RealDigits[%, 10, 100] (* (C) A195489  *)
    c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
    RealDigits[%, 10, 100] (* Philo(ABC,G) A195490 *)

A195488 Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(sqrt(7),3,4).

Original entry on oeis.org

2, 6, 5, 9, 6, 8, 4, 7, 2, 2, 7, 6, 3, 0, 1, 5, 7, 8, 2, 8, 6, 9, 3, 1, 5, 8, 7, 6, 5, 0, 6, 1, 2, 3, 1, 9, 7, 2, 2, 0, 9, 7, 7, 0, 3, 4, 5, 3, 4, 2, 9, 3, 4, 0, 4, 1, 2, 1, 6, 6, 2, 3, 1, 6, 8, 7, 6, 3, 1, 8, 7, 1, 6, 8, 8, 0, 8, 1, 7, 7, 1, 2, 0, 1, 7, 2, 9, 6, 9, 9, 7, 2, 9, 4, 0, 2, 1, 0, 8, 3
Offset: 1

Views

Author

Clark Kimberling, Sep 19 2011

Keywords

Comments

See A195304 for definitions and a general discussion.

Examples

			(B)=2.659684722763015782869315876506123197220...
		

Crossrefs

Cf. A195304.

Programs

  • Mathematica
    a = Sqrt[7]; b = 3; h = 2 a/3; k = b/3;
    f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f1 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (A) A195487 *)
    f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f2 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (B) A195488 *)
    f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f3 = (f[t])^(1/2) /. Part[s, 1]
    RealDigits[%, 10, 100] (* (C) A195489  *)
    c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
    RealDigits[%, 10, 100] (* Philo(ABC,G) A195490 *)

A195489 Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(sqrt(7),3,4).

Original entry on oeis.org

1, 8, 1, 7, 3, 6, 3, 6, 0, 0, 5, 7, 5, 5, 1, 7, 6, 2, 3, 7, 6, 2, 6, 3, 8, 9, 1, 1, 6, 4, 7, 5, 9, 5, 6, 6, 8, 5, 4, 1, 3, 7, 5, 2, 6, 2, 5, 3, 1, 7, 7, 8, 7, 3, 9, 7, 1, 8, 3, 3, 8, 4, 8, 0, 5, 1, 0, 8, 2, 7, 7, 5, 8, 9, 2, 3, 7, 3, 9, 2, 9, 8, 2, 4, 3, 6, 3, 5, 9, 0, 1, 2, 3, 5, 2, 5, 2, 6, 7, 3
Offset: 1

Views

Author

Clark Kimberling, Sep 19 2011

Keywords

Comments

See A195304 for definitions and a general discussion.

Examples

			(C)=1.817363600575517623762638911647...
		

Crossrefs

Cf. A195304.

Programs

  • Mathematica
    a = Sqrt[7]; b = 3; h = 2 a/3; k = b/3;
    f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f1 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (A) A195487 *)
    f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f2 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (B) A195488 *)
    f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f3 = (f[t])^(1/2) /. Part[s, 1]
    RealDigits[%, 10, 100] (* (C) A195489  *)
    c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
    RealDigits[%, 10, 100] (* Philo(ABC,G) A195490 *)

A195490 Decimal expansion of normalized Philo sum, Philo(ABC,G), where G=centroid of the sqrt(7),3,4 right triangle ABC.

Original entry on oeis.org

6, 3, 5, 0, 0, 3, 8, 3, 3, 3, 3, 6, 2, 3, 7, 3, 5, 2, 4, 7, 0, 2, 1, 2, 1, 9, 0, 3, 6, 9, 3, 5, 0, 3, 5, 9, 3, 1, 9, 3, 7, 8, 2, 0, 9, 4, 7, 3, 1, 4, 8, 3, 5, 1, 7, 0, 6, 8, 1, 4, 0, 6, 5, 2, 9, 7, 0, 2, 5, 4, 4, 1, 6, 5, 9, 8, 5, 1, 3, 1, 3, 7, 7, 1, 4, 9, 2, 3, 0, 8, 8, 2, 4, 9, 0, 9, 4, 6, 4, 0
Offset: 0

Views

Author

Clark Kimberling, Sep 19 2011

Keywords

Comments

See A195304 for definitions and a general discussion.

Examples

			Philo(ABC,G)=0.635003833336237352470212190369350359...
		

Crossrefs

Cf. A195304.

Programs

  • Mathematica
    a = Sqrt[7]; b = 3; h = 2 a/3; k = b/3;
    f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f1 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (A) A195487 *)
    f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f2 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (B) A195488 *)
    f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f3 = (f[t])^(1/2) /. Part[s, 1]
    RealDigits[%, 10, 100] (* (C) A195489  *)
    c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
    RealDigits[%, 10, 100] (* Philo(ABC,G) A195490 *)

A195491 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(r),r), where r=(1+sqrt(5))/2 (the golden ratio).

Original entry on oeis.org

6, 2, 9, 5, 8, 1, 0, 6, 1, 3, 8, 7, 7, 1, 6, 0, 4, 4, 0, 4, 5, 4, 9, 5, 8, 7, 5, 6, 8, 8, 5, 4, 0, 6, 9, 2, 2, 3, 1, 6, 8, 4, 9, 0, 8, 3, 8, 6, 6, 0, 7, 0, 2, 9, 6, 5, 1, 1, 2, 3, 1, 3, 4, 9, 6, 2, 5, 2, 6, 6, 6, 5, 0, 5, 1, 3, 5, 9, 2, 3, 4, 6, 8, 8, 9, 9, 4, 9, 2, 9, 6, 9, 8, 9, 0, 2, 8, 7, 6, 7
Offset: 0

Views

Author

Clark Kimberling, Sep 19 2011

Keywords

Comments

See A195304 for definitions and a general discussion.

Examples

			(A)=0.62958106138771604404549587568854069...
		

Crossrefs

Programs

  • Mathematica
    a = 1; b = Sqrt[GoldenRatio]; h = 2 a/3; k = b/3;
    f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f1 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (A) A195491 *)
    f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f2 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (B) A195492 *)
    f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f3 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (C) A195493 *)
    c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
    RealDigits[%, 10, 100] (* Philo(ABC,G) A195494 *)

A195492 Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(r),r), where r=(1+sqrt(5))/2 (the golden ratio).

Original entry on oeis.org

1, 0, 6, 8, 4, 7, 3, 0, 1, 7, 1, 9, 8, 6, 1, 0, 0, 3, 5, 7, 5, 3, 9, 8, 2, 0, 2, 5, 9, 9, 5, 6, 9, 6, 7, 6, 0, 9, 5, 0, 5, 7, 8, 8, 0, 8, 5, 2, 8, 7, 9, 5, 2, 7, 3, 0, 6, 8, 4, 1, 0, 7, 5, 1, 9, 4, 3, 6, 2, 1, 9, 6, 3, 2, 3, 0, 8, 7, 8, 6, 8, 7, 7, 9, 0, 6, 8, 1, 0, 2, 4, 5, 0, 6, 6, 9, 5, 6, 1, 4
Offset: 1

Views

Author

Clark Kimberling, Sep 19 2011

Keywords

Comments

See A195304 for definitions and a general discussion.

Examples

			(B)=1.0684730171986100357539820259956...
		

Crossrefs

Cf. A195304.

Programs

  • Mathematica
    a = 1; b = Sqrt[GoldenRatio]; h = 2 a/3; k = b/3;
    f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f1 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (A) A195491 *)
    f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f2 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (B) A195492 *)
    f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f3 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (C) A195493 *)
    c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
    RealDigits[%, 10, 100] (* Philo(ABC,G) A195494 *)
  • PARI
    polrootsreal(3464*x^8 - 16028*x^7 + 40544*x^6 + 47079*x^5 - 64883*x^4 + 50115*x^3 - 43008*x^2 - 60658*x + 32292)[4] \\ Charles R Greathouse IV, Nov 26 2024

A195493 Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(r),r), where r=(1+sqrt(5))/2 (the golden ratio).

Original entry on oeis.org

7, 5, 9, 3, 1, 0, 7, 7, 8, 3, 7, 3, 7, 3, 4, 9, 5, 6, 8, 1, 1, 8, 4, 2, 6, 9, 0, 4, 9, 7, 7, 6, 7, 3, 6, 8, 7, 0, 2, 8, 5, 5, 3, 5, 3, 7, 4, 8, 7, 0, 3, 2, 3, 0, 0, 0, 4, 2, 2, 3, 8, 7, 9, 7, 5, 8, 9, 9, 1, 7, 4, 6, 7, 7, 7, 2, 2, 6, 0, 4, 6, 7, 1, 3, 9, 8, 3, 0, 8, 0, 4, 2, 3, 1, 3, 3, 2, 0, 1, 1
Offset: 0

Views

Author

Clark Kimberling, Sep 19 2011

Keywords

Comments

See A195304 for definitions and a general discussion.

Examples

			(C)=0.759310778373734956811842690497767...
		

Crossrefs

Cf. A195304.

Programs

  • Mathematica
    a = 1; b = Sqrt[GoldenRatio]; h = 2 a/3; k = b/3;
    f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f1 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (A) A195491 *)
    f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f2 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (B) A195492 *)
    f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f3 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (C) A195493 *)
    c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
    RealDigits[%, 10, 100] (* Philo(ABC,G) A195494 *)

A195494 Decimal expansion of normalized Philo sum, Philo(ABC,G), where G=centroid of the right triangle ABC having sidelengths (a,b,c)=(1,sqrt(r),r), where r=(1+sqrt(5))/2 (the golden ratio).

Original entry on oeis.org

6, 3, 1, 7, 0, 4, 6, 2, 0, 4, 1, 6, 6, 7, 9, 6, 8, 2, 9, 8, 0, 6, 1, 4, 4, 4, 6, 4, 1, 6, 4, 7, 6, 0, 8, 3, 3, 4, 2, 8, 5, 0, 2, 9, 6, 8, 3, 1, 0, 3, 5, 0, 6, 6, 4, 3, 3, 8, 3, 1, 3, 0, 2, 6, 2, 7, 8, 1, 5, 8, 1, 7, 4, 0, 4, 4, 1, 6, 7, 8, 8, 4, 7, 9, 7, 0, 1, 9, 2, 0, 0, 2, 5, 2, 0, 4, 3, 0, 7, 1
Offset: 0

Views

Author

Clark Kimberling, Sep 19 2011

Keywords

Comments

See A195304 for definitions and a general discussion.

Examples

			Philo(ABC,G)=0.631704620416679682980614446416476083...
		

Crossrefs

Cf. A195304.

Programs

  • Mathematica
    a = 1; b = Sqrt[GoldenRatio]; h = 2 a/3; k = b/3;
    f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f1 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (A) A195491 *)
    f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f2 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (B) A195492 *)
    f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f3 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (C) A195493 *)
    c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
    RealDigits[%, 10, 100] (* Philo(ABC,G) A195494 *)

A195495 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(r-1,r,sqrt(3)), where r=(1+sqrt(5))/2 (the golden ratio).

Original entry on oeis.org

4, 0, 5, 1, 7, 7, 8, 2, 9, 7, 2, 0, 5, 7, 1, 7, 7, 7, 8, 8, 0, 3, 0, 7, 3, 9, 4, 9, 8, 0, 5, 1, 4, 5, 8, 4, 6, 8, 8, 3, 2, 3, 9, 3, 7, 4, 0, 8, 9, 2, 3, 7, 6, 9, 9, 0, 7, 8, 5, 6, 5, 8, 0, 7, 3, 8, 9, 5, 8, 9, 0, 4, 6, 6, 4, 6, 2, 1, 3, 2, 6, 2, 2, 8, 4, 4, 7, 6, 8, 9, 3, 7, 6, 0, 2, 9, 7, 1, 8, 5
Offset: 0

Views

Author

Clark Kimberling, Sep 19 2011

Keywords

Comments

See A195304 for definitions and a general discussion.

Examples

			(A)=0.40517782972057177788030739498051458468832393740...
		

Crossrefs

Programs

  • Mathematica
    a = b - 1; b = GoldenRatio; h = 2 a/3; k = b/3;
    f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f1 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (A) A195495 *)
    f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f2 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (B) A195496 *)
    f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f3 = (f[t])^(1/2) /. Part[s, 1]
    RealDigits[%, 10, 100] (* (C) A195497 *)
    c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
    RealDigits[%, 10, 100] (* Philo(ABC,G) A195498 *)
Previous Showing 41-50 of 63 results. Next