A195620
Numerators of Pythagorean approximations to 4.
Original entry on oeis.org
63, 4161, 274559, 18116737, 1195430079, 78880268481, 5204902289663, 343444670849281, 22662143373762879, 1495358017997500737, 98670967044461285759, 6510788466916447359361, 429613367849441064432063, 28347971489596193805156801
Offset: 1
-
I:=[63,4161,274559]; [n le 3 select I[n] else 65*Self(n-1) +65*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Feb 15 2023
-
LinearRecurrence[{65,65,-1}, {63,4161,274559}, 40] (* G. C. Greubel, Feb 15 2023 *)
-
Vec(x*(63+66*x-x^2)/((1+x)*(1-66*x+x^2)) + O(x^20)) \\ Colin Barker, Jun 03 2015
-
A078989=BinaryRecurrenceSequence(66, -1, 1, 67)
[(16*A078989(n) + (-1)^n)/17 for n in range(1, 41)] # G. C. Greubel, Feb 15 2023
A195622
Denominators of Pythagorean approximations to 5.
Original entry on oeis.org
20, 2020, 206040, 21014040, 2143226060, 218588044060, 22293837268080, 2273752813300080, 231900493119340100, 23651576545359390100, 2412228907133538450120, 246023696951075562522120, 25092004860102573838806140, 2559138472033511455995704140
Offset: 1
-
I:=[20,2020,206040]; [n le 3 select I[n] else 101*Self(n-1) +101*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Feb 15 2023
-
r = 5; z = 20;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195622, A195623 *)
Sqrt[a^2 + b^2] (* A097727 *)
(* by Peter J. C. Moses, Sep 02 2011 *)
LinearRecurrence[{101,101,-1},{20,2020,206040},20] (* Harvey P. Dale, Oct 17 2021 *)
-
Vec(20*x/((x+1)*(x^2-102*x+1)) + O(x^20)) \\ Colin Barker, Jun 03 2015
-
A097726=BinaryRecurrenceSequence(102, -1, 1, 103)
[(5/26)*(A097726(n) - (-1)^n) for n in range(1, 41)] # G. C. Greubel, Feb 15 2023
A195623
Numerators of Pythagorean approximations to 5.
Original entry on oeis.org
99, 10101, 1030199, 105070201, 10716130299, 1092940220301, 111469186340399, 11368764066500401, 1159502465596700499, 118257882726796950501, 12061144535667692250599, 1230118484755377812610601, 125460024300512869194030699, 12795692360167557279978520701, 1305035160712790329688615080799
Offset: 1
-
I:=[99,10101,1030199]; [n le 3 select I[n] else 101*Self(n-1) +101*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Feb 16 2023
-
Table[(5*LucasL[2*n+1,10] +2*(-1)^n)/52, {n,40}] (* G. C. Greubel, Feb 16 2023 *)
-
Vec(-x*(x^2-102*x-99) / ((x+1)*(x^2-102*x+1)) + O(x^20)) \\ Colin Barker, Jun 03 2015
-
A097726=BinaryRecurrenceSequence(102, -1, 1, 103)
[(1/26)*(25*A097726(n) + (-1)^n) for n in range(1, 41)] # G. C. Greubel, Feb 16 2023
A195631
Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(2/3).
Original entry on oeis.org
4, 171, 3304, 36456, 193028, 198629, 64044140, 3209176272, 2089963197, 14714161192, 151173075361, 450458512764, 1490895165780, 4767682119956876, 19409457907183648, 293100434264580753, 818944253254104320, 19191303984466705047
Offset: 1
-
r = Sqrt[2/3]; z = 28;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195631, A195632 *)
Sqrt[a^2 + b^2] (* A195633 *)
(* Peter J. C. Moses, Sep 02 2011 *)
A195634
Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(3/4).
Original entry on oeis.org
4, 55, 1120, 2997, 35460, 3140676, 1921787, 32412552, 58579212, 441025780, 410535015, 77779347592, 654610870027, 2025218645520, 7961709199049, 29306172663680, 88433963478036, 109778426942667, 2900499582545112, 4716082204442140
Offset: 1
-
r = Sqrt[3/4]; z = 28;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195634, A195635 *)
Sqrt[a^2 + b^2] (* A195636 *)
(* Peter J. C. Moses, Sep 02 2011 *)
A195680
Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(12).
Original entry on oeis.org
7, 2772, 5945, 26144, 285621, 257076560, 2386970016, 103850955649, 254621037540, 3060691213613, 29733959304728, 62837775720000, 89511043811115, 453985767379732, 1567652657852541, 35830073055128140, 22926879590846577132
Offset: 1
-
r = Sqrt[12]; z = 24;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195680, A195681 *)
Sqrt[a^2 + b^2] (* A195682 *)
(* Peter J. C. Moses, Sep 02 2011 *)
A195681
Numerators b(n) of Pythagorean approximations b(n)/a(n) to sqrt(12).
Original entry on oeis.org
24, 9605, 20592, 90567, 989420, 890539329, 8268706687, 359750263200, 882033147389, 10602545376516, 103001456451945, 217676440363319, 310075351438748, 1572652830029685, 5430508104041980, 124119013940773131, 79421040620720449885
Offset: 1
A195682
Hypotenuses of primitive Pythagorean triples in A195680 and A195681.
Original entry on oeis.org
25, 9997, 21433, 94265, 1029821, 926902721, 8606342785, 374439945601, 918049206661, 11035479109045, 107207314895753, 226564822394569, 322736658181277, 1636868962618493, 5652252040004741, 129187165603885181, 82664039951186181157
Offset: 1
A195687
Denominators a(n) of Pythagorean approximations b(n)/a(n) to (1+sqrt(5))/2 (the golden ratio).
Original entry on oeis.org
3, 8, 28, 1863, 4400, 433008, 262353, 352207108, 379920428, 18418959496, 91011249895, 978117768540, 11516765628956, 1219780690817560, 708294344602810604, 25852535312829023356, 229222230912132985022679
Offset: 1
-
r = GoldenRatio; z = 24;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[p[{r, z}]] (* A195687, A195688 *)
Sqrt[a^2 + b^2] (* A195689 *)
(* Peter J. C. Moses, Sep 02 2011 *)
A195501
Numerators b(n) of Pythagorean approximations b(n)/a(n) to sqrt(2).
Original entry on oeis.org
4, 325, 435, 7480, 769189, 998691, 1760400, 72332699, 107770201, 162402622743, 150321171634588, 314779738565193, 4979439027990791, 25240412071733925, 26320772661145332, 150784475760058387, 381611630092964177, 506075333191877232
Offset: 1
Comments