cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A348607 Decimal expansion of BesselJ(1,2).

Original entry on oeis.org

5, 7, 6, 7, 2, 4, 8, 0, 7, 7, 5, 6, 8, 7, 3, 3, 8, 7, 2, 0, 2, 4, 4, 8, 2, 4, 2, 2, 6, 9, 1, 3, 7, 0, 8, 6, 9, 2, 0, 3, 0, 2, 6, 8, 9, 7, 1, 9, 6, 7, 5, 4, 4, 0, 1, 2, 1, 1, 3, 9, 0, 2, 0, 7, 6, 4, 0, 8, 7, 1, 1, 6, 2, 8, 9, 6, 1, 2, 1, 8, 4, 9, 4, 8, 3, 9, 9
Offset: 0

Views

Author

Dumitru Damian, Oct 25 2021

Keywords

Examples

			0.5767248077568733872...
		

Crossrefs

Bessel function values: A334380 (J(0,1)), A091681 (J(0,2)), A334383 (J(0,sqrt(2))), this sequence (J(1,2)), A197036 (I(0,1)), A070910 (I(0,2)), A334381 (I(0,sqrt(2))), A096789 (I(1,2)).

Programs

  • Mathematica
    RealDigits[BesselJ[1, 2], 10, 100][[1]] (* Amiram Eldar, Oct 25 2021 *)
  • PARI
    besselj(1, 2) \\ Michel Marcus, Oct 25 2021
  • Sage
    bessel_J(1, 2).n(digits=100)
    

Formula

Equals Sum_{k>=0} (-1)^k/(k!*(k+1)!).

A334378 Decimal expansion of Sum_{k>=0} 1/((2*k+1)!)^2.

Original entry on oeis.org

1, 0, 2, 7, 8, 4, 7, 2, 6, 1, 5, 9, 7, 4, 1, 5, 7, 9, 9, 6, 9, 2, 6, 8, 8, 4, 9, 3, 0, 8, 0, 7, 9, 2, 3, 6, 3, 7, 3, 0, 3, 4, 3, 3, 1, 0, 2, 8, 3, 4, 2, 5, 7, 2, 5, 4, 7, 1, 2, 4, 5, 0, 2, 2, 8, 2, 6, 7, 2, 5, 6, 9, 2, 7, 3, 2, 3, 3, 2, 8, 1, 8, 8, 5, 7, 3, 5, 2, 7, 8, 8, 3, 5, 1, 5, 2, 8, 2, 6, 6, 4, 6, 7, 6, 7, 9, 2, 3, 7, 8
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 25 2020

Keywords

Examples

			1/1!^2 + 1/3!^2 + 1/5!^2 + 1/7!^2 + ... = 1.027847261597415799692...
Continued fraction: 1 + 1/(36 - 36/(401 - 400/(1765 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (2*n*(2*n + 1))^2 for n >= 1. - _Peter Bala_, Feb 22 2024
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(BesselI[0, 2] - BesselJ[0, 2])/2, 10, 110] [[1]]
  • PARI
    suminf(k=0, 1/((2*k+1)!)^2) \\ Michel Marcus, Apr 26 2020
    
  • PARI
    (besseli(0,2) - besselj(0,2))/2 \\ Michel Marcus, Apr 26 2020

Formula

Equals (BesselI(0,2) - BesselJ(0,2))/2.

A367729 Decimal expansion of BesselI(0,2/sqrt(3)).

Original entry on oeis.org

1, 3, 6, 2, 1, 6, 1, 6, 3, 9, 6, 0, 9, 7, 8, 9, 9, 0, 4, 9, 4, 3, 1, 4, 3, 6, 2, 8, 4, 1, 4, 5, 5, 0, 0, 7, 3, 1, 8, 4, 0, 4, 3, 5, 4, 2, 9, 0, 0, 1, 3, 1, 5, 8, 7, 0, 7, 0, 2, 3, 6, 5, 7, 6, 4, 0, 0, 5, 5, 5, 6, 3, 6, 7, 8, 7, 8, 7, 8, 4, 6, 7, 1, 9, 1, 3, 0, 0, 9, 8, 1, 4, 9, 8, 3, 5, 2, 7
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 28 2023

Keywords

Examples

			1.36216163960978990494314362841455...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[BesselI[0, 2/Sqrt[3]], 10, 98][[1]]
  • PARI
    besseli(0,2/sqrt(3)) \\ Michel Marcus, Nov 29 2023

Formula

Equals Sum_{k>=0} 1 / (3^k * k!^2).

A212186 Decimal expansion of the integral over exp(x)/sqrt(1-x^2) dx between 0 and 1.

Original entry on oeis.org

3, 1, 0, 4, 3, 7, 9, 0, 1, 7, 8, 5, 5, 5, 5, 5, 0, 9, 8, 1, 8, 1, 7, 6, 9, 8, 6, 3, 1, 8, 7, 7, 9, 4, 7, 6, 7, 2, 2, 8, 9, 0, 9, 2, 0, 3, 3, 6, 1, 3, 6, 8, 3, 5, 0, 9, 7, 2, 4, 8, 8, 8, 2, 6, 1, 9, 6, 8, 1, 4, 0, 3, 2, 6, 9, 9, 3, 9, 9, 9, 5, 8, 0, 2, 7, 8, 4, 6, 5, 6, 6, 3, 6, 1, 4, 8, 3, 9, 7, 6, 5, 8, 2, 8, 1, 1, 9
Offset: 1

Views

Author

R. J. Mathar, Feb 13 2013

Keywords

Comments

This appears as the first integral in an attempt to expand exp(x) in a Chebyshev series between 0 and 1. Other integrals of the higher order terms in that expansion are generally bootstrapped from the lower order terms.
If we substitute x=cos(y), this is the integral over exp(cos(y)) dy from y=0 to y=Pi/2, which matches (apart from the upper limit) eq. 3.915.4 of the Gradsteyn-Ryzhik tables. - R. J. Mathar, Feb 15 2013

Examples

			3.104379017855555098181769863187794767228...
		

Programs

  • Mathematica
    RealDigits[ Pi*(BesselI[0, 1] + StruveL[0, 1])/2, 10, 107] // First (* Jean-François Alcover, Feb 21 2013 *)
    RealDigits[Integrate[Exp[x]/Sqrt[1-x^2],{x,0,1}],10,120][[1]] (* Harvey P. Dale, Jul 05 2025 *)

Formula

Equals Pi*(A197036+A197037)/2 .

A226975 Decimal expansion I_1(1), the modified Bessel function of the first kind.

Original entry on oeis.org

5, 6, 5, 1, 5, 9, 1, 0, 3, 9, 9, 2, 4, 8, 5, 0, 2, 7, 2, 0, 7, 6, 9, 6, 0, 2, 7, 6, 0, 9, 8, 6, 3, 3, 0, 7, 3, 2, 8, 8, 9, 9, 6, 2, 1, 6, 2, 1, 0, 9, 2, 0, 0, 9, 4, 8, 0, 2, 9, 4, 4, 8, 9, 4, 7, 9, 2, 5, 5, 6, 4, 0, 9, 6, 4, 3, 7, 1, 1, 3, 4, 0, 9, 2, 6, 6, 4, 9, 9, 7, 7, 6, 6, 8, 1, 4, 4, 1, 0, 0, 6, 4, 6, 7, 7, 8, 8, 6
Offset: 0

Views

Author

Horst-Holger Boltz, Jun 25 2013

Keywords

Comments

This is also the derivative of the zeroth modified Bessel function at 1.

Examples

			0.56515910399248502720769602760986330732889962162109...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 51, page 504.

Crossrefs

Programs

  • Mathematica
    RealDigits[BesselI[1, 1], 10, 110][[1]]
  • PARI
    besseli(1,1) \\ Charles R Greathouse IV, Feb 19 2014
    
  • SageMath
    ((1/2) * sum(1 / (4^x * factorial(x) * rising_factorial(2, x)), x, 0, oo)).n(360)
    # Peter Luschny, Jan 29 2024

Formula

From Antonio Graciá Llorente, Jan 29 2024: (Start)
I_1(1) = (1/2) * Sum_{k>=0} (2*k)/(4^k*k!^2) = (1/2) * Sum_{k>=0} (2*k)/A002454(k).
Equals (1/2) * Sum_{k>=0} (4*k^2 + 4*k - 1) / (2*k)!!^2.
Equals exp(-1) * Sum_{k>=0} binomial(2*k,k+1)/(2^k*k!).
Equals (-e) * Sum_{k>=0} (-1/2)^k * binomial(2*k,k+1)/k!
Equals (1/Pi)*Integral_{t=0..Pi} exp(cos(t))*cos(t) dt. (End)
Previous Showing 11-15 of 15 results.