cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 136 results. Next

A200106 Decimal expansion of greatest x satisfying x^2 - 4*cos(x) = 4*sin(x).

Original entry on oeis.org

1, 7, 6, 9, 5, 6, 8, 8, 7, 4, 3, 7, 2, 7, 0, 1, 7, 4, 9, 1, 1, 5, 0, 7, 8, 4, 6, 2, 0, 0, 1, 6, 2, 7, 7, 5, 4, 7, 6, 5, 5, 5, 3, 4, 1, 0, 5, 3, 8, 0, 6, 4, 0, 4, 0, 5, 3, 9, 9, 1, 8, 7, 9, 8, 4, 0, 5, 9, 5, 2, 4, 5, 4, 0, 9, 7, 9, 4, 2, 2, 5, 4, 4, 0, 2, 3, 5, 1, 2, 0, 1, 4, 4, 1, 5, 7, 7, 4, 0
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.698933604732903309337989544733567956233...
greatest x: 1.7695688743727017491150784620016277547...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -4; c = 4;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.7, -.6}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200105 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.76, 1.77}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200106 *)
  • PARI
    a=1; b=-4; c=4; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 25 2018

A200107 Decimal expansion of least x satisfying 2*x^2 - cos(x) = sin(x), negated.

Original entry on oeis.org

4, 6, 9, 0, 3, 2, 3, 7, 1, 1, 1, 9, 8, 0, 9, 3, 0, 5, 7, 3, 3, 5, 4, 9, 3, 0, 5, 8, 0, 2, 5, 1, 0, 5, 0, 0, 5, 5, 0, 0, 5, 6, 3, 6, 9, 5, 9, 3, 8, 3, 0, 6, 6, 8, 7, 3, 2, 8, 8, 7, 0, 4, 1, 8, 4, 8, 2, 6, 3, 8, 4, 1, 7, 4, 6, 1, 1, 2, 1, 2, 9, 0, 7, 6, 5, 5, 5, 2, 5, 1, 2, 6, 4, 8, 8, 2, 9, 4, 6
Offset: 0

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.4690323711198093057335493058025105005500...
greatest x: 0.84026351771576789934797349964835579736...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 2; b = -1; c = 1;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.47, -.46}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200107 *)
    r = x /. FindRoot[f[x] == g[x], {x, .84, .85}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200108 *)
  • PARI
    a=2; b=-1; c=1; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 25 2018

A200108 Decimal expansion of greatest x satisfying 2*x^2 - cos(x) = sin(x).

Original entry on oeis.org

8, 4, 0, 2, 6, 3, 5, 1, 7, 7, 1, 5, 7, 6, 7, 8, 9, 9, 3, 4, 7, 9, 7, 3, 4, 9, 9, 6, 4, 8, 3, 5, 5, 7, 9, 7, 3, 6, 5, 0, 2, 5, 3, 9, 0, 5, 3, 5, 1, 5, 2, 6, 6, 1, 1, 7, 3, 5, 4, 3, 6, 3, 9, 2, 5, 1, 7, 4, 5, 5, 5, 6, 5, 3, 6, 2, 5, 0, 2, 1, 5, 6, 7, 8, 0, 3, 5, 1, 8, 3, 7, 2, 4, 6, 3, 0, 2, 7, 7
Offset: 0

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.4690323711198093057335493058025105005500...
greatest x: 0.840263517715767899347973499648355797365...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 2; b = -1; c = 1;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /.
      FindRoot[f[x] == g[x], {x, -.47, -.46}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200107 *)
    r = x /. FindRoot[f[x] == g[x], {x, .84, .85}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200108 *)
  • PARI
    a=2; b=-1; c=1; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 25 2018

A200109 Decimal expansion of least x satisfying 2*x^2 - cos(x) = 2*sin(x), negated.

Original entry on oeis.org

3, 5, 2, 3, 6, 5, 0, 0, 5, 7, 7, 7, 3, 2, 6, 4, 5, 3, 1, 0, 2, 8, 6, 6, 1, 9, 5, 3, 5, 9, 9, 9, 6, 8, 1, 0, 8, 6, 8, 5, 9, 0, 3, 3, 1, 2, 4, 3, 7, 1, 6, 9, 7, 9, 3, 6, 0, 2, 5, 2, 5, 0, 3, 8, 5, 6, 6, 5, 7, 4, 5, 4, 2, 5, 4, 0, 3, 3, 6, 7, 0, 3, 7, 7, 7, 9, 1, 1, 0, 6, 1, 4, 3, 6, 9, 5, 9, 4, 6
Offset: 0

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.35236500577732645310286619535999...
greatest x: 1.056698376942878122192408303117...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 2; b = -1; c = 2;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.36, -.35}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200109 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.05, 1.06}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200110 *)
  • PARI
    a=2; b=-1; c=2; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 25 2018

A200110 Decimal expansion of greatest x satisfying 2*x^2 - cos(x) = 2*sin(x).

Original entry on oeis.org

1, 0, 5, 6, 6, 9, 8, 3, 7, 6, 9, 4, 2, 8, 7, 8, 1, 2, 2, 1, 9, 2, 4, 0, 8, 3, 0, 3, 1, 1, 7, 5, 2, 5, 0, 9, 3, 5, 5, 7, 1, 3, 6, 8, 6, 5, 0, 9, 1, 9, 3, 5, 0, 7, 4, 4, 3, 8, 6, 6, 4, 9, 4, 2, 8, 0, 6, 9, 8, 4, 2, 7, 3, 3, 0, 3, 3, 7, 1, 5, 8, 8, 7, 0, 0, 9, 2, 6, 3, 1, 0, 0, 5, 0, 4, 1, 4, 2, 9
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.35236500577732645310286619535999...
greatest x: 1.0566983769428781221924083031175250...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 2; b = -1; c = 2;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.36, -.35}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200109 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.05, 1.06}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200110 *)
  • PARI
    a=2; b=-1; c=2; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 25 2018

A200112 Decimal expansion of greatest x satisfying 2*x^2-cos(x) = 3*sin(x).

Original entry on oeis.org

1, 2, 5, 7, 4, 1, 1, 4, 2, 9, 4, 9, 4, 7, 5, 9, 2, 5, 6, 0, 2, 2, 3, 7, 3, 0, 9, 8, 1, 4, 8, 0, 3, 8, 9, 5, 2, 5, 2, 1, 6, 0, 2, 4, 9, 3, 6, 7, 8, 6, 4, 7, 2, 8, 0, 1, 2, 9, 2, 2, 8, 1, 6, 3, 4, 8, 6, 2, 7, 9, 2, 8, 1, 1, 1, 6, 5, 0, 3, 7, 3, 9, 5, 0, 0, 0, 0, 0, 8, 8, 4, 9, 9, 4, 8, 5, 4, 7, 4
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.27418592805983157901293857616592610671...
greatest x: 1.25741142949475925602237309814803895...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 2; b = -1; c = 3;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.28, -.27}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200111 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.25, 1.26}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200112 *)
  • PARI
    a=2; b=-1; c=3; solve(x=1.25, 1.26, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

A200114 Decimal expansion of least x satisfying 2*x^2 - cos(x) = 4*sin(x), negated.

Original entry on oeis.org

2, 2, 1, 2, 3, 4, 7, 1, 6, 8, 5, 6, 5, 5, 0, 8, 4, 5, 9, 2, 8, 7, 5, 1, 6, 1, 4, 5, 6, 5, 1, 7, 9, 1, 5, 6, 6, 1, 6, 0, 0, 1, 8, 4, 8, 1, 0, 3, 7, 5, 1, 2, 2, 6, 1, 0, 9, 7, 5, 6, 4, 8, 7, 2, 2, 1, 3, 6, 8, 0, 3, 2, 0, 7, 6, 1, 3, 9, 5, 9, 6, 8, 0, 3, 8, 5, 5, 3, 6, 8, 5, 1, 5, 0, 2, 9, 7, 5, 8
Offset: 0

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.22123471685655084592875161456517915661...
greatest x: 1.431778732687231131820591799700558843...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 2; b = -1; c = 4;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.23, -.22}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200114 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.43, 1.44}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200115 *)
  • PARI
    a=2; b=-1; c=4; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 29 2018

A200115 Decimal expansion of greatest x satisfying 2*x^2 - cos(x) = 4*sin(x).

Original entry on oeis.org

1, 4, 3, 1, 7, 7, 8, 7, 3, 2, 6, 8, 7, 2, 3, 1, 1, 3, 1, 8, 2, 0, 5, 9, 1, 7, 9, 9, 7, 0, 0, 5, 5, 8, 8, 4, 3, 9, 2, 4, 1, 9, 0, 4, 9, 6, 6, 1, 7, 0, 4, 2, 0, 0, 6, 6, 7, 9, 9, 9, 3, 2, 1, 8, 9, 6, 2, 3, 2, 9, 2, 4, 0, 8, 7, 8, 6, 0, 2, 1, 8, 6, 9, 6, 7, 5, 3, 0, 7, 9, 3, 7, 2, 9, 1, 1, 5, 0, 1
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.22123471685655084592875161456517915661...
greatest x: 1.431778732687231131820591799700558843...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 2; b = -1; c = 4;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.23, -.22}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200114 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.43, 1.44}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200115 *)
  • PARI
    a=2; b=-1; c=4; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 29 2018

A200116 Decimal expansion of least x satisfying 2*x^2 - 2*cos(x) = sin(x), negated.

Original entry on oeis.org

6, 8, 0, 3, 2, 6, 4, 1, 4, 1, 3, 8, 6, 7, 9, 2, 9, 6, 2, 3, 9, 6, 3, 1, 6, 2, 0, 7, 3, 6, 4, 1, 9, 1, 7, 6, 8, 6, 5, 5, 3, 0, 2, 5, 8, 0, 2, 1, 0, 8, 1, 4, 5, 3, 5, 6, 0, 8, 0, 7, 7, 9, 5, 9, 8, 9, 2, 6, 3, 3, 9, 2, 2, 7, 0, 8, 1, 5, 4, 8, 2, 0, 3, 7, 7, 9, 1, 0, 0, 2, 2, 0, 1, 2, 5, 7, 6, 4, 7
Offset: 0

Views

Author

Clark Kimberling, Nov 14 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.680326414138679296239631620736419...
greatest x: 0.9847126993630673524991380090748...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 2; b = -2; c = 1;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.69, -.68}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200116 *)
    r = x /. FindRoot[f[x] == g[x], {x, .98, .99}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200117 *)
  • PARI
    a=2; b=-2; c=1; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 29 2018

A200117 Decimal expansion of greatest x satisfying 2*x^2 - 2*cos(x) = sin(x).

Original entry on oeis.org

9, 8, 4, 7, 1, 2, 6, 9, 9, 3, 6, 3, 0, 6, 7, 3, 5, 2, 4, 9, 9, 1, 3, 8, 0, 0, 9, 0, 7, 4, 8, 4, 5, 5, 2, 4, 3, 2, 3, 5, 0, 7, 8, 9, 3, 1, 1, 5, 1, 0, 5, 9, 5, 6, 0, 4, 9, 2, 5, 3, 6, 5, 5, 6, 9, 1, 3, 4, 7, 6, 9, 8, 2, 7, 3, 6, 3, 5, 2, 6, 1, 9, 1, 6, 0, 4, 3, 4, 8, 3, 7, 0, 8, 5, 6, 3, 0, 4, 0
Offset: 0

Views

Author

Clark Kimberling, Nov 14 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.680326414138679296239631620736419...
greatest x: 0.9847126993630673524991380090748...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 2; b = -2; c = 1;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.69, -.68}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200116 *)
    r = x /. FindRoot[f[x] == g[x], {x, .98, .99}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200117 *)
  • PARI
    a=2; b=-2; c=1; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 29 2018
Previous Showing 61-70 of 136 results. Next