cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 45 results. Next

A201415 Decimal expansion of greatest x satisfying 6*x^2 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

1, 4, 9, 6, 2, 8, 5, 0, 4, 8, 6, 0, 7, 6, 5, 2, 9, 5, 3, 4, 7, 9, 2, 2, 9, 0, 4, 1, 7, 1, 2, 4, 2, 4, 4, 6, 9, 7, 5, 1, 2, 6, 6, 2, 6, 7, 9, 8, 7, 7, 1, 8, 2, 6, 4, 4, 9, 4, 1, 4, 8, 6, 8, 8, 7, 0, 5, 6, 1, 9, 9, 3, 2, 4, 9, 0, 6, 9, 7, 4, 6, 1, 6, 1, 7, 7, 7, 6, 8, 9, 8, 5, 8, 6, 6, 4, 9, 0, 8
Offset: 1

Views

Author

Clark Kimberling, Dec 01 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.42800895010041097002739347769069180659...
greatest: 1.496285048607652953479229041712424469...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 6; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201414 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201415 *)
  • PARI
    solve(x=1,2, 6*x^2*cos(x)-1) \\ Charles R Greathouse IV, Nov 26 2024

A201416 Decimal expansion of least x satisfying 7*x^2 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

3, 9, 3, 2, 7, 3, 8, 2, 7, 3, 2, 8, 8, 4, 1, 5, 0, 3, 8, 3, 2, 4, 5, 2, 0, 5, 7, 2, 0, 6, 2, 5, 3, 4, 2, 6, 5, 9, 1, 4, 5, 2, 1, 7, 7, 2, 0, 3, 0, 3, 2, 2, 0, 5, 9, 1, 8, 2, 9, 7, 1, 9, 8, 6, 8, 9, 1, 8, 8, 7, 1, 5, 2, 9, 8, 6, 0, 8, 6, 3, 5, 3, 9, 4, 1, 4, 6, 2, 8, 9, 1, 1, 5, 9, 4, 9, 3, 2, 6
Offset: 0

Views

Author

Clark Kimberling, Dec 01 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.39327382732884150383245205720625342659...
greatest: 1.507928795380098266567899994070991413...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 7; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201416 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201417 *)

A201417 Decimal expansion of greatest x satisfying 7*x^2 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

1, 5, 0, 7, 9, 2, 8, 7, 9, 5, 3, 8, 0, 0, 9, 8, 2, 6, 6, 5, 6, 7, 8, 9, 9, 9, 9, 4, 0, 7, 0, 9, 9, 1, 4, 1, 3, 3, 9, 9, 6, 3, 0, 1, 1, 4, 6, 2, 2, 2, 1, 0, 4, 1, 8, 0, 3, 0, 5, 4, 5, 7, 3, 5, 2, 6, 3, 9, 4, 0, 3, 2, 6, 3, 3, 9, 6, 3, 2, 6, 5, 4, 9, 7, 2, 1, 7, 5, 5, 1, 3, 4, 9, 7, 3, 7, 6, 4, 3
Offset: 1

Views

Author

Clark Kimberling, Dec 01 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.39327382732884150383245205720625342659...
greatest: 1.507928795380098266567899994070991413...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 7; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201416 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201417 *)

A201418 Decimal expansion of least x satisfying 8*x^2 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

3, 6, 5, 8, 6, 8, 4, 4, 2, 1, 8, 1, 0, 4, 6, 9, 0, 9, 4, 4, 4, 8, 8, 7, 9, 5, 0, 9, 1, 8, 0, 3, 6, 6, 4, 6, 0, 8, 1, 3, 8, 4, 5, 6, 4, 5, 7, 0, 2, 3, 0, 7, 3, 9, 7, 3, 1, 2, 9, 8, 0, 3, 0, 0, 6, 6, 9, 3, 5, 0, 8, 6, 2, 0, 3, 6, 5, 3, 7, 8, 9, 3, 1, 2, 1, 4, 9, 7, 5, 2, 2, 9, 3, 9, 9, 0, 4, 2, 3
Offset: 0

Views

Author

Clark Kimberling, Dec 01 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.365868442181046909444887950918036646081...
greatest: 1.5164098481119355896362189407751970807...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 8; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201418 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201419 *)

A201419 Decimal expansion of greatest x satisfying 8*x^2 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

1, 5, 1, 6, 4, 0, 9, 8, 4, 8, 1, 1, 1, 9, 3, 5, 5, 8, 9, 6, 3, 6, 2, 1, 8, 9, 4, 0, 7, 7, 5, 1, 9, 7, 0, 8, 0, 7, 6, 6, 7, 9, 5, 6, 1, 1, 8, 2, 4, 4, 3, 0, 6, 3, 4, 7, 6, 0, 8, 6, 1, 0, 3, 9, 9, 9, 5, 2, 4, 0, 4, 5, 1, 7, 0, 0, 0, 1, 2, 8, 9, 8, 1, 1, 2, 1, 9, 0, 3, 9, 7, 8, 2, 8, 9, 3, 9, 6, 8
Offset: 1

Views

Author

Clark Kimberling, Dec 01 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.365868442181046909444887950918036646081...
greatest: 1.5164098481119355896362189407751970807...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 8; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201418 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201419 *)

A201420 Decimal expansion of least x satisfying 9*x^2 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

3, 4, 3, 5, 1, 9, 3, 8, 4, 4, 4, 8, 7, 5, 1, 7, 2, 8, 5, 1, 5, 7, 9, 3, 7, 9, 1, 6, 0, 5, 4, 7, 6, 8, 6, 0, 1, 4, 4, 8, 5, 9, 7, 4, 9, 4, 9, 4, 2, 1, 8, 9, 6, 5, 0, 9, 4, 4, 1, 5, 8, 8, 5, 3, 7, 2, 3, 4, 6, 8, 9, 3, 0, 4, 9, 5, 5, 9, 8, 9, 1, 9, 6, 8, 4, 5, 8, 0, 9, 1, 9, 1, 9, 6, 2, 4, 0, 8, 6
Offset: 0

Views

Author

Clark Kimberling, Dec 02 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.3435193844487517285157937916054768...
greatest: 1.52286717667793005738690747334562...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 9; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201420 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201421 *)

A201421 Decimal expansion of greatest x satisfying 9*x^2 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

1, 5, 2, 2, 8, 6, 7, 1, 7, 6, 6, 7, 7, 9, 3, 0, 0, 5, 7, 3, 8, 6, 9, 0, 7, 4, 7, 3, 3, 4, 5, 6, 2, 6, 0, 8, 2, 0, 5, 8, 9, 8, 9, 5, 1, 0, 6, 3, 5, 7, 4, 9, 4, 3, 0, 9, 9, 6, 1, 5, 5, 5, 4, 8, 9, 2, 2, 9, 8, 2, 8, 2, 9, 3, 9, 5, 7, 9, 4, 8, 6, 7, 6, 8, 2, 6, 7, 3, 7, 9, 2, 5, 3, 2, 6, 0, 1, 7, 9, 9
Offset: 1

Views

Author

Clark Kimberling, Dec 02 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.3435193844487517285157937916054768...
greatest: 1.52286717667793005738690747334562...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 9; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201420 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201421 *)

A201422 Decimal expansion of least x satisfying 10*x^2 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

3, 2, 4, 8, 3, 5, 7, 6, 2, 5, 5, 2, 6, 7, 2, 6, 3, 4, 3, 2, 7, 2, 1, 6, 8, 9, 0, 5, 9, 1, 8, 3, 5, 7, 0, 3, 0, 0, 8, 4, 8, 6, 6, 5, 9, 6, 3, 0, 4, 6, 3, 6, 6, 2, 0, 1, 2, 2, 0, 0, 8, 0, 9, 3, 4, 7, 0, 4, 7, 3, 0, 6, 0, 5, 4, 5, 6, 0, 1, 9, 8, 7, 1, 0, 1, 7, 2, 5, 7, 1, 5, 1, 3, 9, 3, 5, 8, 7, 8
Offset: 0

Views

Author

Clark Kimberling, Dec 02 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.3248357625526726343272168905918357...
greatest: 1.52794989469861441964924475246801...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 10; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201422 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201423 *)

A201423 Decimal expansion of greatest x satisfying 10*x^2 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

1, 5, 2, 7, 9, 4, 9, 8, 9, 4, 6, 9, 8, 6, 1, 4, 4, 1, 9, 6, 4, 9, 2, 4, 4, 7, 5, 2, 4, 6, 8, 0, 1, 9, 8, 4, 7, 4, 3, 0, 5, 4, 9, 8, 4, 6, 9, 8, 8, 5, 8, 3, 4, 6, 0, 2, 2, 7, 6, 4, 3, 7, 4, 6, 8, 8, 0, 0, 1, 0, 6, 3, 7, 2, 5, 6, 8, 1, 3, 5, 5, 6, 2, 2, 9, 3, 9, 5, 4, 0, 8, 6, 8, 8, 8, 6, 0, 4, 2, 5
Offset: 1

Views

Author

Clark Kimberling, Dec 02 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.3248357625526726343272168905918357...
greatest: 1.52794989469861441964924475246801...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 10; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201422 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201423 *)

A201515 Decimal expansion of least x satisfying 3*x^2 - 1 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

9, 5, 3, 5, 3, 9, 0, 9, 7, 5, 4, 9, 9, 1, 4, 6, 8, 9, 6, 6, 7, 2, 7, 0, 6, 9, 5, 3, 7, 2, 3, 7, 8, 2, 2, 7, 4, 3, 3, 6, 0, 9, 6, 5, 6, 0, 5, 1, 5, 1, 6, 0, 6, 8, 0, 6, 9, 6, 9, 6, 0, 1, 9, 7, 9, 7, 3, 5, 6, 7, 6, 1, 0, 2, 2, 9, 8, 0, 9, 1, 3, 6, 4, 7, 8, 7, 6, 9, 4, 7, 8, 2, 7, 9, 5, 7, 4, 5, 7
Offset: 0

Views

Author

Clark Kimberling, Dec 02 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.95353909754991468966727069537237822743...
greatest: 1.341430166291259764576080506763614171...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 3; c = -1;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .9, 1}, WorkingPrecision -> 110]
    RealDigits[r]  (* A201515 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]  (* A201516 *)
Previous Showing 11-20 of 45 results. Next