cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 64 results. Next

A201755 Decimal expansion of the least x satisfying -x^2+4=e^x.

Original entry on oeis.org

1, 9, 6, 4, 6, 3, 5, 5, 9, 7, 4, 8, 8, 8, 6, 4, 5, 0, 7, 6, 2, 2, 6, 5, 9, 6, 9, 2, 1, 1, 0, 9, 7, 7, 5, 8, 8, 3, 7, 5, 3, 0, 7, 5, 0, 6, 3, 7, 9, 4, 2, 2, 8, 1, 1, 5, 2, 1, 9, 7, 9, 5, 8, 3, 2, 3, 5, 7, 0, 1, 6, 4, 3, 2, 2, 0, 8, 8, 1, 3, 2, 7, 7, 9, 0, 4, 8, 2, 1, 7, 3, 5, 1, 7, 0, 4, 8, 3, 0
Offset: 1

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -1.96463559748886450762265969211097...
greatest:  1.058006401090636308621387446123...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = -1; b = 0; c = 4;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -2.0, -1.9}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201755 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201756 *)

A201756 Decimal expansion of the greatest x satisfying -x^2+4=e^x.

Original entry on oeis.org

1, 0, 5, 8, 0, 0, 6, 4, 0, 1, 0, 9, 0, 6, 3, 6, 3, 0, 8, 6, 2, 1, 3, 8, 7, 4, 4, 6, 1, 2, 3, 1, 6, 1, 3, 5, 1, 4, 3, 2, 6, 8, 2, 8, 8, 6, 3, 5, 8, 9, 4, 8, 6, 6, 0, 5, 4, 4, 5, 9, 4, 4, 3, 0, 2, 2, 7, 5, 3, 2, 7, 6, 6, 3, 5, 8, 3, 0, 9, 3, 6, 6, 4, 1, 6, 0, 6, 8, 5, 0, 9, 8, 0, 5, 5, 8, 0, 0, 9
Offset: 1

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -1.96463559748886450762265969211097...
greatest:  1.058006401090636308621387446123...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = -1; b = 0; c = 4;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -2.0, -1.9}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201755 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201756 *)

A201757 Decimal expansion of the least x satisfying -x^2+5=e^x.

Original entry on oeis.org

2, 2, 1, 1, 4, 3, 7, 7, 5, 8, 8, 4, 2, 0, 4, 2, 3, 4, 4, 8, 9, 2, 4, 2, 3, 2, 9, 2, 3, 3, 0, 1, 5, 2, 7, 2, 5, 9, 6, 5, 5, 7, 2, 8, 3, 4, 7, 9, 2, 1, 7, 1, 4, 6, 0, 9, 5, 3, 5, 5, 0, 3, 4, 1, 6, 9, 6, 2, 7, 6, 4, 8, 1, 4, 9, 5, 9, 0, 3, 6, 8, 2, 2, 3, 0, 1, 2, 5, 2, 3, 6, 1, 8, 3, 6, 2, 2, 7, 8
Offset: 1

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -2.21143775884204234489242329233015272...
greatest:  1.241142758399597693572251244897788...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = -1; b = 0; c = 5;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -2.3, -2.2}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201757 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.3}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201758 *)

A201758 Decimal expansion of the greatest x satisfying -x^2+5=e^x.

Original entry on oeis.org

1, 2, 4, 1, 1, 4, 2, 7, 5, 8, 3, 9, 9, 5, 9, 7, 6, 9, 3, 5, 7, 2, 2, 5, 1, 2, 4, 4, 8, 9, 7, 7, 8, 8, 7, 2, 9, 5, 6, 2, 5, 3, 8, 9, 9, 9, 3, 8, 5, 7, 2, 1, 6, 3, 2, 1, 1, 7, 4, 5, 5, 9, 0, 4, 6, 6, 7, 3, 3, 4, 1, 2, 8, 7, 1, 5, 6, 0, 9, 7, 6, 8, 1, 4, 8, 7, 1, 2, 6, 0, 0, 2, 0, 5, 3, 6, 9, 2, 2
Offset: 1

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -2.21143775884204234489242329233015272...
greatest:  1.2411427583995976935722512448977887...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = -1; b = 0; c = 5;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -2.3, -2.2}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201757 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.3}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201758 *)

A201759 Decimal expansion of the least x satisfying -x^2+6=e^x.

Original entry on oeis.org

2, 4, 3, 1, 4, 7, 9, 6, 5, 9, 7, 2, 3, 0, 3, 6, 0, 3, 9, 7, 3, 6, 5, 3, 9, 0, 1, 4, 0, 8, 3, 4, 1, 5, 0, 8, 2, 9, 7, 7, 3, 1, 3, 9, 5, 9, 0, 5, 2, 2, 4, 2, 9, 2, 8, 2, 7, 6, 1, 3, 7, 9, 7, 2, 4, 5, 3, 9, 7, 8, 0, 9, 6, 9, 6, 7, 1, 1, 7, 9, 7, 8, 4, 1, 9, 5, 9, 5, 3, 3, 0, 6, 6, 1, 2, 8, 6, 7, 1
Offset: 1

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -2.431479659723036039736539014083415082...
greatest:  1.3977805354241768741646854746062333...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = -1; b = 0; c = 6;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -2.5, -2.4}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201759 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.4}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201760 *)

A201760 Decimal expansion of the greatest x satisfying -x^2+6 = e^x.

Original entry on oeis.org

1, 3, 9, 7, 7, 8, 0, 5, 3, 5, 4, 2, 4, 1, 7, 6, 8, 7, 4, 1, 6, 4, 6, 8, 5, 4, 7, 4, 6, 0, 6, 2, 3, 3, 3, 6, 8, 9, 4, 8, 0, 7, 2, 4, 1, 0, 7, 6, 4, 9, 2, 3, 5, 6, 6, 8, 8, 0, 1, 4, 3, 3, 1, 1, 4, 7, 4, 5, 1, 6, 8, 9, 1, 1, 2, 4, 0, 3, 2, 1, 6, 3, 4, 2, 4, 9, 7, 5, 9, 7, 5, 1, 8, 6, 4, 9, 5, 7, 2
Offset: 1

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -2.431479659723036039736539014083415082...
greatest:  1.3977805354241768741646854746062333...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = -1; b = 0; c = 6;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -2.5, -2.4}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201759 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.4}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201760 *)

A201761 Decimal expansion of the least x satisfying -x^2+7=e^x.

Original entry on oeis.org

2, 6, 3, 2, 1, 2, 3, 5, 6, 0, 6, 1, 4, 2, 2, 2, 9, 5, 3, 8, 7, 5, 3, 0, 7, 6, 7, 1, 3, 3, 8, 3, 1, 2, 9, 3, 4, 3, 3, 8, 3, 6, 4, 8, 3, 7, 1, 0, 4, 3, 3, 0, 3, 7, 5, 4, 2, 5, 0, 6, 9, 9, 4, 5, 0, 8, 9, 0, 4, 6, 2, 8, 2, 9, 1, 2, 8, 7, 6, 5, 5, 1, 4, 9, 7, 2, 6, 1, 3, 6, 8, 4, 8, 2, 4, 1, 3, 4, 1
Offset: 1

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -2.6321235606142229538753076713383129343383...
greatest:  1.53531760234376586202692372439720620861...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = -1; b = 0; c = 7;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -2.7, -2.6}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201761 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201762 *)

A201762 Decimal expansion of the greatest x satisfying -x^2+7=e^x.

Original entry on oeis.org

1, 5, 3, 5, 3, 1, 7, 6, 0, 2, 3, 4, 3, 7, 6, 5, 8, 6, 2, 0, 2, 6, 9, 2, 3, 7, 2, 4, 3, 9, 7, 2, 0, 6, 2, 0, 8, 6, 1, 2, 5, 4, 7, 9, 0, 6, 2, 8, 6, 4, 0, 2, 5, 4, 1, 5, 9, 2, 1, 2, 9, 5, 3, 6, 3, 0, 4, 2, 8, 4, 8, 3, 4, 9, 4, 2, 2, 2, 5, 2, 8, 8, 1, 2, 4, 3, 4, 1, 3, 6, 5, 4, 7, 9, 0, 2, 9, 3, 0
Offset: 1

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -2.6321235606142229538753076713383129343383...
greatest:  1.53531760234376586202692372439720620861...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = -1; b = 0; c = 7;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -2.7, -2.6}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201761 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201762 *)

A201763 Decimal expansion of the least x satisfying -x^2+8=e^x.

Original entry on oeis.org

2, 8, 1, 7, 8, 4, 7, 6, 9, 4, 4, 1, 6, 5, 7, 3, 6, 8, 9, 3, 7, 7, 2, 7, 4, 0, 9, 6, 5, 0, 4, 0, 6, 4, 1, 2, 8, 2, 2, 8, 3, 8, 6, 2, 2, 3, 4, 1, 7, 1, 6, 8, 5, 3, 9, 0, 6, 1, 7, 6, 2, 5, 2, 5, 8, 9, 3, 5, 4, 6, 5, 2, 8, 5, 9, 3, 6, 1, 8, 9, 9, 3, 3, 0, 9, 8, 4, 5, 7, 4, 8, 7, 6, 0, 5, 6, 4, 5, 4
Offset: 1

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -2.8178476944165736893772740965040641282283...
greatest:  1.65826072045249887879638437964645256434...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = -1; b = 0; c = 8;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -2.8, -2.9}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201763 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.6, 1.7}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201764 *)

A201764 Decimal expansion of the greatest x satisfying -x^2+8=e^x.

Original entry on oeis.org

1, 6, 5, 8, 2, 6, 0, 7, 2, 0, 4, 5, 2, 4, 9, 8, 8, 7, 8, 7, 9, 6, 3, 8, 4, 3, 7, 9, 6, 4, 6, 4, 5, 2, 5, 6, 4, 3, 4, 8, 2, 8, 5, 7, 0, 8, 4, 4, 4, 2, 2, 7, 3, 0, 9, 1, 1, 5, 4, 0, 2, 8, 3, 5, 2, 2, 7, 6, 1, 8, 9, 0, 1, 2, 8, 8, 9, 4, 1, 0, 6, 5, 4, 4, 8, 8, 5, 6, 1, 7, 1, 8, 5, 8, 5, 8, 5, 7, 3
Offset: 1

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -2.8178476944165736893772740965040641282283...
greatest:  1.65826072045249887879638437964645256434...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = -1; b = 0; c = 8;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -2.8, -2.9}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201763 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.6, 1.7}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201764 *)
Previous Showing 21-30 of 64 results. Next