cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 64 results. Next

A204028 Symmetric matrix based on f(i,j)=min(3i-2,3j-2), by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 4, 4, 1, 1, 4, 7, 4, 1, 1, 4, 7, 7, 4, 1, 1, 4, 7, 10, 7, 4, 1, 1, 4, 7, 10, 10, 7, 4, 1, 1, 4, 7, 10, 13, 10, 7, 4, 1, 1, 4, 7, 10, 13, 13, 10, 7, 4, 1, 1, 4, 7, 10, 13, 16, 13, 10, 7, 4, 1, 1, 4, 7, 10, 13, 16, 16, 13, 10, 7, 4, 1, 1, 4, 7, 10, 13, 16, 19, 16
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

A204028 represents the matrix M given by f(i,j)=min(3i-2,3j-2) for i>=1 and j>=1. See A204029 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

Examples

			Northwest corner:
1...1...1...1....1....1
1...4...4...4....4....4
1...4...7...7....7....7
1...4...7...10...10...10
1...4...7...10...13...13
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Min[3 i - 2, 3 j - 2];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6x6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204028 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204029 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204118 Symmetric matrix based on f(i,j) = gcd(prime(i), prime(j)), by antidiagonals.

Original entry on oeis.org

2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

A204118 represents the matrix M given by f(i,j) = gcd(prime(i), prime(j)) for i >= 1 and j >= 1. See A204119 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

Examples

			Northwest corner:
  2  1  1  1  1
  1  3  1  1  1
  1  1  5  1  1
  1  1  1  7  1
  1  1  1  1 11
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := GCD[Prime[i], Prime[j]];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8 X 8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204118 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204119 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204123 Symmetric matrix based on f(i,j)=max([i/j],[j/i]), where [ ]=floor, by antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 4, 1, 1, 4, 5, 2, 1, 2, 5, 6, 2, 1, 1, 2, 6, 7, 3, 1, 1, 1, 3, 7, 8, 3, 2, 1, 1, 2, 3, 8, 9, 4, 2, 1, 1, 1, 2, 4, 9, 10, 4, 2, 1, 1, 1, 1, 2, 4, 10, 11, 5, 3, 2, 1, 1, 1, 2, 3, 5, 11, 12, 5, 3, 2, 1, 1, 1, 1, 2, 3, 5, 12, 13, 6, 3, 2, 1, 1, 1, 1, 1, 2, 3, 6, 13, 14, 6, 4, 2
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

This sequence represents the matrix M given by f(i,j)=max([i/j],[j/i]) for i>=1 and j>=1. See A204124 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

Examples

			Northwest corner:
1 2 3 4 5 6
2 1 1 2 2 3
3 1 1 1 1 2
4 2 1 1 1 1
5 2 1 1 1 1
6 3 2 1 1 1
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Max[Floor[i/j], Floor[j/i]];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204123 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204124 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204125 Symmetric matrix based on f(i,j)=(i if i=j and 1 otherwise), by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

A204125 represents the matrix M given by f(i,j)=max([i/j],[j/i]) for i>=1 and j>=1. See A204126 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

Examples

			Northwest corner:
1 1 1 1 1 1
1 2 1 1 1 1
1 1 3 1 1 1
1 1 1 4 1 1
1 1 1 1 5 1
1 1 1 1 1 6
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := 1; f[i_, i_] := i;
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204125 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204126 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204131 Symmetric matrix based on f(i,j)=(2i-1 if i=j and 1 otherwise), by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

A204131 represents the matrix M given by f(i,j)=(2i-1 if i=j and 1 otherwise) for i>=1 and j>=1. See A204132 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

Examples

			Northwest corner:
1 1 1 1 1
1 3 1 1 1
1 1 5 1 1
1 1 1 7 1
1 1 1 1 9
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := 1; f[i_, i_] := 2*i - 1;
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204131 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204132 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204166 Symmetric matrix based on f(i,j)=ceiling[(i+j)/2], by antidiagonals.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2012

Keywords

Comments

A204166 represents the matrix M given by f(i,j)=ceiling[(i+j)/2] for i>=1 and j>=1. See A204167 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

Examples

			Northwest corner:
1 2 2 3 3 4 4 5
2 2 3 3 4 4 5 5
2 3 3 4 4 5 5 6
3 3 4 4 5 5 6 6
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Ceiling[(i + j)/2];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204166 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204167 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A193917 Triangular array: the self-fusion of (p(n,x)), where p(n,x)=sum{F(k+1)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 3, 6, 9, 3, 5, 9, 15, 24, 5, 8, 15, 24, 40, 64, 8, 13, 24, 39, 64, 104, 168, 13, 21, 39, 63, 104, 168, 273, 441, 21, 34, 63, 102, 168, 272, 441, 714, 1155, 34, 55, 102, 165, 272, 440, 714, 1155, 1870, 3025, 55, 89, 165, 267, 440, 712, 1155
Offset: 0

Views

Author

Clark Kimberling, Aug 09 2011

Keywords

Comments

See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. (Fusion is defined at A193822; fission, at A193742; see A202503 and A202453 for infinite-matrix representations of fusion and fission.)
First five rows of P (triangle of coefficients of polynomials p(n,x)):
1
1...1
1...1...2
1...1...2...3
1...1...2...3...5
First eight rows of A193917:
1
1...1
1...2...3
2...3...6...9
3...5...9...15...24
5...8...15..24...40...64
8...13..24..39...64...104..168
13..21..39..63...104..168..273..441
...
col 1: A000045
col 2: A000045
col 3: A022086
col 4: A022086
col 5: A022091
col 6: A022091
col 7: A022355
col 8: A022355
right edge, w(n,n): A064831
w(n,n-1): A001654
w(n,n-2): A064831
w(n,n-3): A059840
w(n,n-4): A080097
w(n,n-5): A080143
w(n,n-6): A080144
Suppose n is an even positive integer and w(n+1,x) is the polynomial matched to row n+1 of A193917 as in the Mathematica program (and definition of fusion at A193722), where the first row is counted as row 0.

Examples

			First six rows:
1
1...1
1...2...3
2...3...6....9
3...5...9....15...24
5...8...15...24...40...64
		

Crossrefs

Programs

  • Mathematica
    z = 12;
    p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
    q[n_, x_] := p[n, x];
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]]  (* A193917 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]]  (* A193918 *)

A194000 Triangular array: the self-fission of (p(n,x)), where sum{F(k+1)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers).

Original entry on oeis.org

1, 2, 3, 3, 5, 9, 5, 8, 15, 24, 8, 13, 24, 39, 64, 13, 21, 39, 63, 104, 168, 21, 34, 63, 102, 168, 272, 441, 34, 55, 102, 165, 272, 440, 714, 1155, 55, 89, 165, 267, 440, 712, 1155, 1869, 3025, 89, 144, 267, 432, 712, 1152, 1869, 3024, 4895, 7920, 144, 233
Offset: 0

Views

Author

Clark Kimberling, Aug 11 2011

Keywords

Comments

See A193917 for the self-fusion of the same sequence of polynomials. (Fusion is defined at A193822; fission, at A193842; see A202503 and A202453 for infinite-matrix representations of fusion and fission.)
...
First five rows of P (triangle of coefficients of polynomials p(n,x)):
1
1...1
1...1...2
1...1...2...3
1...1...2...3...5
First eight rows of A194000:
1
2....3
3....5....9
5....8....15...24
8....13...24...39...64
13...21...29...63...104...168
21...34...63...102..168...272...441
34...55...102..165..272...440...714..1155
...
col 1: A000045
col 2: A000045
col 3: A022086
col 4: A022086
col 5: A022091
col 6: A022091
right edge, d(n,n): A064831
d(n,n-1): A059840
d(n,n-2): A080097
d(n,n-3): A080143
d(n,n-4): A080144
...
Suppose n is an odd positive integer and d(n+1,x) is the polynomial matched to row n+1 of A194000 as in the Mathematica program (and definition of fission at A193842), where the first row is counted as row 0.

Examples

			First six rows:
1
2....3
3....5....9
5....8....15...24
8....13...24...39...64
13...21...29...63...104...168
...
Referring to the matrix product for fission at A193842,
the row (5,8,15,24) is the product of P(4) and QQ, where
P(4)=(p(4,4), p(4,3), p(4,2), p(4,1))=(5,3,2,1); and
QQ is the 4x4 matrix
(1..1..2..3)
(0..1..1..2)
(0..0..1..1)
(0..0..0..1).
		

Crossrefs

Programs

  • Mathematica
    z = 11;
    p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
    q[n_, x_] := p[n, x];
    p1[n_, k_] := Coefficient[p[n, x], x^k];
    p1[n_, 0] := p[n, x] /. x -> 0;
    d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
    h[n_] := CoefficientList[d[n, x], {x}]
    TableForm[Table[Reverse[h[n]], {n, 0, z}]]
    Flatten[Table[Reverse[h[n]], {n, -1, z}]]  (* A194000 *)
    TableForm[Table[h[n], {n, 0, z}]]
    Flatten[Table[h[n], {n, -1, z}]]  (* A194001 *)

A202970 Symmetric matrix based on A001911, by antidiagonals.

Original entry on oeis.org

1, 3, 3, 6, 10, 6, 11, 21, 21, 11, 19, 39, 46, 39, 19, 32, 68, 87, 87, 68, 32, 53, 115, 153, 167, 153, 115, 53, 87, 191, 260, 296, 296, 260, 191, 87, 142, 314, 433, 505, 528, 505, 433, 314, 142, 231, 513, 713, 843, 904, 904, 843, 713, 513, 231, 375, 835
Offset: 1

Views

Author

Clark Kimberling, Dec 27 2011

Keywords

Comments

Let s=A001911 (F(n+3)-2, where F(n)=A000045(n), the Fibonacci numbers), and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A202970 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A202971 for characteristic polynomials of principal submatrices of M, with interlacing zeros.

Examples

			Northwest corner:
1...3...6....11...19
3...10..21...39...68
6...21..46...87...153
11..39..87...167..296
19..68..153..296..528
		

Crossrefs

Programs

  • Mathematica
    s[k_] := -2 + Fibonacci[k + 3];
    U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]];
    L = Transpose[U]; M = L.U; TableForm[M]
    m[i_, j_] := M[[i]][[j]];
    Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
    f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]
    Table[f[n], {n, 1, 12}]
    Table[Sqrt[f[n]], {n, 1, 12}]  (* A001891 *)
    Table[m[1, j], {j, 1, 12}]     (* A001911 *)
    Table[m[j, j], {j, 1, 12}]
    Table[m[j, j + 1], {j, 1, 12}]
    Table[Sum[m[i, n + 1 - i], {i, 1, n}], {n, 1, 12}]  (* A001925 *)

A203003 Symmetric matrix based on A007598(n+1), by antidiagonals.

Original entry on oeis.org

1, 4, 4, 9, 17, 9, 25, 40, 40, 25, 64, 109, 98, 109, 64, 169, 281, 265, 265, 281, 169, 441, 740, 685, 723, 685, 740, 441, 1156, 1933, 1802, 1865, 1865, 1802, 1933, 1156, 3025, 5065, 4709, 4910, 4819, 4910, 4709, 5065, 3025, 7921, 13256, 12337, 12827
Offset: 1

Views

Author

Clark Kimberling, Dec 27 2011

Keywords

Comments

Let s=A007598(n+1) (squared Fibonacci numbers, beginning with F(2)), and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A203003 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A203004 for characteristic polynomials of principal submatrices of M, with interlacing zeros.

Examples

			Northwest corner:
1....4.....9....25....64
4....17....40...109...281
9....40....98...265...685
25...109...265..1865
		

Crossrefs

Programs

  • Mathematica
    s[k_] := Fibonacci[k + 1]^2;
    U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]];
    L = Transpose[U]; M = L.U; TableForm[M]
    m[i_, j_] := M[[i]][[j]];  (* A203003 *)
    Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
    f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]; Table[f[n], {n, 1, 12}]
    Table[Sqrt[f[n]], {n, 1, 12}]    (* A119996 *)
    Table[m[1, j], {j, 1, 12}]       (* A007598(n+1) *)
Previous Showing 21-30 of 64 results. Next