cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A203144 Decimal expansion of Gamma(5/8).

Original entry on oeis.org

1, 4, 3, 4, 5, 1, 8, 8, 4, 8, 0, 9, 0, 5, 5, 6, 7, 7, 5, 6, 3, 6, 0, 1, 9, 7, 3, 9, 4, 5, 6, 4, 2, 3, 1, 3, 6, 6, 3, 2, 2, 0, 7, 7, 7, 2, 2, 0, 6, 6, 6, 7, 3, 3, 0, 7, 7, 0, 6, 7, 9, 8, 5, 8, 0, 9, 5, 0, 9, 4, 1, 9, 7, 3, 0, 2, 0, 9, 6, 9, 1, 4, 6, 3, 0, 9, 5, 6, 9, 6, 6, 5, 2, 5, 6, 3, 2, 2, 9
Offset: 1

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			1.4345188480905567756360197394564231366322077722066673307706...
		

Programs

Formula

this * A203142 = 2^(3/4)*sqrt(Pi) * A068466. - R. J. Mathar, Jan 15 2021

A203125 Decimal expansion of (1/8)! = Gamma(9/8).

Original entry on oeis.org

9, 4, 1, 7, 4, 2, 6, 9, 9, 8, 4, 9, 7, 0, 1, 4, 8, 8, 0, 8, 7, 4, 0, 3, 7, 3, 0, 1, 5, 1, 8, 9, 1, 7, 0, 3, 0, 7, 6, 3, 0, 2, 4, 4, 8, 5, 1, 8, 6, 3, 4, 4, 9, 2, 6, 2, 2, 8, 9, 0, 9, 8, 7, 2, 2, 2, 0, 8, 2, 9, 5, 7, 1, 4, 9, 8, 6, 3, 3, 0, 1, 6, 0, 4, 1, 9, 1, 0, 7, 8, 3, 5, 1, 2, 9, 4, 6, 0, 6
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			.94174269984970148808740373015189170307630244851863449262289...
		

Crossrefs

Programs

Formula

Equals A203142/8. - R. J. Mathar, Jan 15 2021
A203144 *this *A231863 *A011006 = A068467. - R. J. Mathar, Jan 15 2021
Equals Integral_{x=0..oo} exp(-x^8) dx. - Ilya Gutkovskiy, Sep 18 2021

A034996 Related to octo-factorial numbers A045755.

Original entry on oeis.org

1, 36, 1632, 81600, 4308480, 235530240, 13189693440, 751812526080, 43438057062400, 2536782532444160, 149439552820346880, 8866746800673914880, 529276578255612149760, 31756594695336728985600, 1913864106972293533532160, 115788778471823758778695680, 7029059963701301121153761280
Offset: 1

Views

Author

Keywords

Comments

Convolution of A034977(n-1) with A025753(n), n >= 1.

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[(-1 + (1 - 64*x)^(-1/8))/8, {x, 0, 14}], x] (* Michael De Vlieger, Oct 13 2019 *)

Formula

a(n) = 8^(n-1)*A045755(n)/n!, where A045755(n) = (8*n-7)!^8 = Product_{j=1..n} (8*j-7).
G.f.: (-1+(1-64*x)^(-1/8))/8.
D-finite with recurrence: n*a(n) + 8*(-8*n+7)*a(n-1) = 0. - R. J. Mathar, Jan 28 2020
a(n) ~ 8^(2*n-1) * n^(-7/8) / Gamma(1/8). - Amiram Eldar, Aug 18 2025

A242011 Decimal expansion of sum_{k>=0} (-1)^k*(log(4k+1)/(4k+1)+log(4k+3)/(4k+3)).

Original entry on oeis.org

0, 2, 3, 0, 0, 4, 5, 8, 7, 8, 6, 2, 7, 3, 6, 0, 1, 0, 3, 1, 7, 9, 9, 2, 6, 0, 2, 1, 4, 5, 1, 4, 6, 9, 6, 2, 3, 1, 8, 6, 6, 7, 6, 4, 1, 4, 7, 5, 0, 8, 8, 3, 2, 9, 0, 9, 6, 3, 8, 0, 0, 6, 2, 0, 6, 5, 8, 1, 4, 5, 4, 7, 6, 3, 5, 4, 5, 5, 9, 4, 1, 4, 0, 3, 1, 5, 6, 6, 2, 3, 6, 1, 5, 5, 8, 9, 1, 9, 6, 7
Offset: 0

Views

Author

Jean-François Alcover, Aug 11 2014

Keywords

Examples

			0.02300458786273601031799260214514696231866764147508832909638...
		

Crossrefs

Programs

  • Mathematica
    s = (Pi/(2*Sqrt[2]))*(Log[Gamma[1/8]*Gamma[3/8]/(Gamma[5/8]*Gamma[7/8])] - (EulerGamma + Log[2*Pi])); Join[{0}, RealDigits[s, 10, 99] // First]

Formula

(Pi/(2*sqrt(3)))*(log(Gamma(1/8)/Gamma(3/8)/(Gamma(5/8)/Gamma(7/8))) - (gamma + log(2*Pi))), where gamma is Euler's constant and Gamma(x) is the Euler Gamma function.

A359533 Decimal expansion of Sum_{k>=0} (-1/64)^k*binomial(2*k, k)^3*(4*k + 1)*H_k, where H_k is the k-th harmonic number (negated).

Original entry on oeis.org

2, 7, 6, 4, 2, 7, 2, 0, 4, 2, 4, 5, 9, 8, 6, 5, 7, 3, 0, 9, 2, 6, 3, 9, 8, 2, 5, 6, 1, 6, 8, 8, 9, 9, 4, 6, 7, 8, 3, 7, 4, 0, 7, 9, 5, 1, 9, 0, 4, 8, 5, 0, 6, 3, 0, 3, 2, 7, 7, 6, 9, 2, 0, 2, 7, 0, 3, 3, 7, 9, 6, 9, 4, 4, 5, 8, 9, 8, 7, 9, 7, 1, 0, 9, 8, 0, 1
Offset: 0

Views

Author

Stefano Spezia, Jan 04 2023

Keywords

Examples

			0.276427204245986573092639825616889946783740795...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[(Gamma[1/8]Gamma[3/8]/(Gamma[1/4]Gamma[3/4]))^2/(6Sqrt[2]Pi)-4Log[2]/Pi,100]]]

Formula

Equals 4*log(2)/Pi - (Gamma(1/8)*Gamma(3/8)/(Gamma(1/4)*Gamma(3/4)))^2/(6*sqrt(2)*Pi).
Equals 4*log(2)/Pi - (Gamma(1/8)*Gamma(3/8))^2/(12*sqrt(2)*Pi^3).
Previous Showing 11-15 of 15 results.