cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A203142 Decimal expansion of Gamma(1/8).

Original entry on oeis.org

7, 5, 3, 3, 9, 4, 1, 5, 9, 8, 7, 9, 7, 6, 1, 1, 9, 0, 4, 6, 9, 9, 2, 2, 9, 8, 4, 1, 2, 1, 5, 1, 3, 3, 6, 2, 4, 6, 1, 0, 4, 1, 9, 5, 8, 8, 1, 4, 9, 0, 7, 5, 9, 4, 0, 9, 8, 3, 1, 2, 7, 8, 9, 7, 7, 7, 6, 6, 6, 3, 6, 5, 7, 1, 9, 8, 9, 0, 6, 4, 1, 2, 8, 3, 3, 5, 2, 8, 6, 2, 6, 8, 1, 0, 3, 5, 6, 8, 5
Offset: 1

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			7.5339415987976119046992298412151336246104195881490759409831...
		

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Gamma(1/8); // G. C. Greubel, Mar 10 2018
  • Mathematica
    RealDigits[Gamma[1/8], 10, 100][[1]] (* Bruno Berselli, Dec 13 2012 *)
    RealDigits[Pi^(1/8) * 2^(17/8) * EllipticK[1/2]^(1/4) * EllipticK[3 - 2*Sqrt[2]]^(1/2), 10, 100][[1]] (* Vaclav Kotesovec, Apr 15 2024 *)
  • PARI
    default(realprecision, 100); gamma(1/8) \\ G. C. Greubel, Jan 15 2017
    

Formula

this * A203144 * A231863 /2^(1/4) = A068466. - R. J. Mathar, Jan 15 2021

A203125 Decimal expansion of (1/8)! = Gamma(9/8).

Original entry on oeis.org

9, 4, 1, 7, 4, 2, 6, 9, 9, 8, 4, 9, 7, 0, 1, 4, 8, 8, 0, 8, 7, 4, 0, 3, 7, 3, 0, 1, 5, 1, 8, 9, 1, 7, 0, 3, 0, 7, 6, 3, 0, 2, 4, 4, 8, 5, 1, 8, 6, 3, 4, 4, 9, 2, 6, 2, 2, 8, 9, 0, 9, 8, 7, 2, 2, 2, 0, 8, 2, 9, 5, 7, 1, 4, 9, 8, 6, 3, 3, 0, 1, 6, 0, 4, 1, 9, 1, 0, 7, 8, 3, 5, 1, 2, 9, 4, 6, 0, 6
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			.94174269984970148808740373015189170307630244851863449262289...
		

Crossrefs

Programs

Formula

Equals A203142/8. - R. J. Mathar, Jan 15 2021
A203144 *this *A231863 *A011006 = A068467. - R. J. Mathar, Jan 15 2021
Equals Integral_{x=0..oo} exp(-x^8) dx. - Ilya Gutkovskiy, Sep 18 2021

A242011 Decimal expansion of sum_{k>=0} (-1)^k*(log(4k+1)/(4k+1)+log(4k+3)/(4k+3)).

Original entry on oeis.org

0, 2, 3, 0, 0, 4, 5, 8, 7, 8, 6, 2, 7, 3, 6, 0, 1, 0, 3, 1, 7, 9, 9, 2, 6, 0, 2, 1, 4, 5, 1, 4, 6, 9, 6, 2, 3, 1, 8, 6, 6, 7, 6, 4, 1, 4, 7, 5, 0, 8, 8, 3, 2, 9, 0, 9, 6, 3, 8, 0, 0, 6, 2, 0, 6, 5, 8, 1, 4, 5, 4, 7, 6, 3, 5, 4, 5, 5, 9, 4, 1, 4, 0, 3, 1, 5, 6, 6, 2, 3, 6, 1, 5, 5, 8, 9, 1, 9, 6, 7
Offset: 0

Views

Author

Jean-François Alcover, Aug 11 2014

Keywords

Examples

			0.02300458786273601031799260214514696231866764147508832909638...
		

Crossrefs

Programs

  • Mathematica
    s = (Pi/(2*Sqrt[2]))*(Log[Gamma[1/8]*Gamma[3/8]/(Gamma[5/8]*Gamma[7/8])] - (EulerGamma + Log[2*Pi])); Join[{0}, RealDigits[s, 10, 99] // First]

Formula

(Pi/(2*sqrt(3)))*(log(Gamma(1/8)/Gamma(3/8)/(Gamma(5/8)/Gamma(7/8))) - (gamma + log(2*Pi))), where gamma is Euler's constant and Gamma(x) is the Euler Gamma function.

A203128 Decimal expansion of (5/8)! = Gamma(13/8).

Original entry on oeis.org

8, 9, 6, 5, 7, 4, 2, 8, 0, 0, 5, 6, 5, 9, 7, 9, 8, 4, 7, 7, 2, 5, 1, 2, 3, 3, 7, 1, 6, 0, 2, 6, 4, 4, 6, 0, 3, 9, 5, 1, 2, 9, 8, 5, 7, 6, 2, 9, 1, 6, 7, 0, 8, 1, 7, 3, 1, 6, 7, 4, 9, 1, 1, 3, 0, 9, 4, 3, 3, 8, 7, 3, 3, 1, 3, 8, 1, 0, 5, 7, 1, 6, 4, 4, 3, 4, 8, 1, 0, 4, 0, 7, 8, 5, 2, 0, 1, 8, 3
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			.89657428005659798477251233716026446039512985762916708173167...
		

Programs

Formula

Equals 5*A203144/8. - R. J. Mathar, Jan 15 2021
Equals Integral_{x=0..oo} exp(-x^(8/5)) dx. - Ilya Gutkovskiy, Apr 10 2024
Showing 1-4 of 4 results.