A210956
Triangle read by rows: T(n,k) = sum of all parts <= k in the last section of the set of partitions of n.
Original entry on oeis.org
1, 1, 3, 2, 2, 5, 3, 7, 7, 11, 5, 7, 10, 10, 15, 7, 15, 21, 25, 25, 31, 11, 17, 23, 27, 32, 32, 39, 15, 31, 40, 52, 57, 63, 63, 71, 22, 36, 54, 62, 72, 78, 85, 85, 94, 30, 60, 78, 98, 113, 125, 132, 140, 140, 150, 42, 72, 102, 122, 142, 154, 168, 176, 185, 185, 196
Offset: 1
Triangle begins:
1;
1, 3;
2, 2, 5;
3, 7, 7, 11;
5, 7, 10, 10, 15;
7, 15, 21, 25, 25, 31;
11, 17, 23, 27, 32, 32, 39;
15, 31, 40, 52, 57, 63, 63, 71;
22, 36, 54, 62, 72, 78, 85, 85, 94;
Cf.
A135010,
A138121,
A182703,
A206437,
A206562,
A207031,
A207032, 207383, 208476,
A210948,
A210955.
-
Row(n)={my(v=vector(n)); v[1]=numbpart(n-1); if(n>1, forpart(p=n, for(k=1, #p, v[p[k]]++), [2,n])); for(k=2, n, v[k]=v[k-1]+k*v[k]); v}
{ for(n=1, 10, print(Row(n))) }
A208476
Triangle read by rows: T(n,k) = total sum of odd/even parts >= k in the last section of the set of partitions of n, if k is odd/even.
Original entry on oeis.org
1, 1, 2, 5, 0, 3, 3, 8, 0, 4, 13, 2, 8, 0, 5, 13, 18, 6, 10, 0, 6
Offset: 1
Triangle begins:
1;
1, 2;
5, 0, 3;
3, 8, 0, 4;
13, 2, 8, 0, 5;
13, 18, 6, 10, 0, 6;
A210955
Triangle read by rows: T(n,k) = total number of parts <= k in the last section of the set of partitions of n.
Original entry on oeis.org
1, 1, 2, 2, 2, 3, 3, 5, 5, 6, 5, 6, 7, 7, 8, 7, 11, 13, 14, 14, 15, 11, 14, 16, 17, 18, 18, 19, 15, 23, 26, 29, 30, 31, 31, 32, 22, 29, 35, 37, 39, 40, 41, 41, 42, 30, 45, 51, 56, 59, 61, 62, 63, 63, 64, 42, 57, 67, 72, 76, 78, 80, 81, 82, 82, 83
Offset: 1
1,
1, 2,
2, 2, 3,
3, 5, 5, 6,
5, 6, 7, 7, 8,
7, 11, 13, 14, 14, 15,
11, 14, 16, 17, 18, 18, 19,
15, 23, 26, 29, 30, 31, 31, 32,
22, 29, 35, 37, 39, 40, 41, 41, 42;
Cf.
A135010,
A138121,
A182703,
A206437,
A206562,
A207031,
A207032,
A207383,
A208476,
A210947,
A210956.
A230440
Triangle read by rows in which row n lists A000041(n-1) 1's followed by the list of partitions of n that do not contain 1 as a part in colexicographic order.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 3, 2, 5, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 2, 3, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 5, 2, 4, 3, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 6, 2, 5, 3, 4, 4, 8
Offset: 1
Illustration of initial terms (row = 1..6). The table shows the six sections of the set of partitions of 6 in three ways. Note that before the dissection, the set of partitions was in colexicographic order, see A211992. More generally, in a master model, the six sections of the set of partitions of 6 also can be interpreted as the first six sections of the set of partitions of any integer >= 6.
---------------------------------------------------------
n j Diagram Parts Parts
---------------------------------------------------------
. _
1 1 |_| 1; 1;
. _
2 1 _| | 1, 1,
2 2 |_ _| 2; 2;
. _
3 1 | | 1, 1,
3 2 _ _| | 1, 1,
3 3 |_ _ _| 3; 3;
. _
4 1 | | 1, 1,
4 2 | | 1, 1,
4 3 _ _ _| | 1, 1,
4 4 |_ _| | 2,2, 2,2,
4 5 |_ _ _ _| 4; 4;
. _
5 1 | | 1, 1,
5 2 | | 1, 1,
5 3 | | 1, 1,
5 4 | | 1, 1,
5 5 _ _ _ _| | 1, 1,
5 6 |_ _ _| | 3,2, 3,2,
5 7 |_ _ _ _ _| 5; 5;
. _
6 1 | | 1, 1,
6 2 | | 1, 1,
6 3 | | 1, 1,
6 4 | | 1, 1,
6 5 | | 1, 1,
6 6 | | 1, 1,
6 7 _ _ _ _ _| | 1, 1,
6 8 |_ _| | | 2,2,2, 2,2,2,
6 9 |_ _ _ _| | 4,2, 4,2,
6 10 |_ _ _| | 3,3, 3,3,
6 11 |_ _ _ _ _ _| 6; 6;
...
Triangle begins:
[1];
[1],[2];
[1],[1],[3];
[1],[1],[1],[2,2],[4];
[1],[1],[1],[1],[1],[3,2],[5];
[1],[1],[1],[1],[1],[1],[1],[2,2,2],[4,2],[3,3],[6];
...
Cf.
A000041,
A135010,
A138121,
A141285,
A182703,
A187219,
A193870,
A194446,
A206437,
A207031,
A207034,
A207383,
A207379,
A211009.
A228527
Triangle read by rows: T(n,k) is the sum of all parts of size k of the n-th section of the set of compositions ( ordered partitions) of any integer >= n.
Original entry on oeis.org
1, 1, 2, 3, 2, 3, 7, 6, 3, 4, 16, 14, 9, 4, 5, 36, 32, 21, 12, 5, 6, 80, 72, 48, 28, 15, 6, 7, 176, 160, 108, 64, 35, 18, 7, 8, 384, 352, 240, 144, 80, 42, 21, 8, 9, 832, 768, 528, 320, 180, 96, 49, 24, 9, 10, 1792, 1664, 1152, 704, 400, 216, 112, 56, 27, 10, 11
Offset: 1
Illustration (using the colexicograpical order of compositions A228525) of the four sections of the set of compositions of 4:
.
. 1 2 3 4
. _ _ _ _
. |_| _| | | | | |
. |_ _| _ _| | | |
. |_| | | |
. |_ _ _| _ _ _| |
. |_| | |
. |_ _| |
. |_| |
. |_ _ _ _|
.
For n = 4 and k = 2, T(4,2) = 6 because there are 3 parts of size 2 in the last section of the set of compositions of 4, so T(4,2) = 3*2 = 6, see below:
--------------------------------------------------------
. The last section Sum of
. Composition of 4 of the set of parts of
. compositions of 4 size k
. -------------------- -------------------
. Diagram Diagram k = 1 2 3 4
. ------------------------------------------------------
. _ _ _ _ _
. 1+1+1+1 |_| | | | 1 | | 1 0 0 0
. 2+1+1 |_ _| | | 1 | | 1 0 0 0
. 1+2+1 |_| | | 1 | | 1 0 0 0
. 3+1 |_ _ _| | 1 _ _ _| | 1 0 0 0
. 1+1+2 |_| | | 1+1+2 |_| | | 2 2 0 0
. 2+2 |_ _| | 2+2 |_ _| | 0 4 0 0
. 1+3 |_| | 1+3 |_| | 1 0 3 0
. 4 |_ _ _ _| 4 |_ _ _ _| 0 0 0 4
. ---------
. Column sums give row 4: 7,6,3,4
.
Triangle begins:
1;
1, 2;
3, 2, 3;
7, 6, 3, 4;
16, 14, 9, 4, 5;
36, 32, 21, 12, 5, 6;
80, 72, 48, 28, 15, 6, 7;
176, 160, 108, 64, 35, 18, 7, 8;
384, 352, 240, 144, 80, 42, 21, 8, 9;
832, 768, 528, 320, 180, 96, 49, 24, 9, 10;
1792, 1664, 1152, 704, 400, 216, 112, 56, 27, 10, 11;
...
Comments