cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A222462 T(n,k) = number of n X k 0..7 arrays with no entry increasing mod 8 by 7 rightwards or downwards, starting with upper left zero.

Original entry on oeis.org

1, 7, 7, 49, 301, 49, 343, 12943, 12943, 343, 2401, 556549, 3418807, 556549, 2401, 16807, 23931607, 903055069, 903055069, 23931607, 16807, 117649, 1029059101, 238535974201, 1465295106499, 238535974201, 1029059101, 117649, 823543
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2013

Keywords

Comments

1/8 the number of 8-colorings of the grid graph P_n X P_k. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
......1.............7..................49........................343
......7...........301...............12943.....................556549
.....49.........12943.............3418807..................903055069
....343........556549...........903055069..............1465295106499
...2401......23931607........238535974201...........2377584520856755
..16807....1029059101......63007686842527........3857863258420747009
.117649...44249541343...16643060295393343.....6259760185235726701945
.823543.1902730277749.4396153388210813341.10157072698503130798653535
...
Some solutions for n=3, k=4:
..0..4..2..3....0..0..0..4....0..4..6..1....0..4..0..4....0..2..6..2
..0..0..5..6....0..0..4..6....0..0..1..5....0..0..6..0....0..0..2..3
..0..0..0..1....0..0..5..1....0..0..3..5....0..0..0..1....0..0..3..5
		

Crossrefs

Columns 1-5 are A000420(n-1), 7*43^(n-1), A222459, A222460, A222461.
Main diagonal is A068258.
Cf. A078099 (3 colorings), A222444 (4 colorings), A222144 (5 colorings), A222281 (6 colorings), A222340 (7 colorings), A198914 (unlabeled 8 colorings).

Formula

T(n, k) = 7 * (720*A198914(n,k) - 360*A198982(n,k) - 240*A198906(n,k) - 90*A198715(n,k) - 24*A207997(n,k) - 5) for n*k > 1. - Andrew Howroyd, Jun 27 2017
Empirical for column k:
k=1: a(n) = 7*a(n-1).
k=2: a(n) = 43*a(n-1).
k=3: a(n) = 270*a(n-1) - 1547*a(n-2).
k=4: a(n) = 1689*a(n-1) - 108775*a(n-2) + 1672631*a(n-3).
k=5: a(n) = 10754*a(n-1) - 8060499*a(n-2) + 2219242223*a(n-3) - 245682627864*a(n-4) + 5798947687589*a(n-5) + 448113231493438*a(n-6) - 2763020698450992*a(n-7).

A078100 1/6 of the number of ways of 3-coloring a 4 X n grid.

Original entry on oeis.org

4, 27, 187, 1302, 9075, 63267, 441090, 3075255, 21440547, 149482638, 1042187067, 7266087315, 50658875658, 353191693599, 2462438631411, 17168025532662, 119694800484387, 834507453158019, 5818153224352338, 40563936024707079, 282810170576026755
Offset: 1

Views

Author

N. J. A. Sloane, Dec 05 2002

Keywords

Comments

Also the number of 3-colorings of the P_4 X P_n grid graph up to permutation of the colors. - Andrew Howroyd, Jun 26 2017

References

  • Michael S. Paterson (Warwick), personal communication.

Crossrefs

Row 4 of (1/2)*A078099.
Row 4 of A207997.

Programs

  • Magma
    I:=[4,27,187]; [n le 3 select I[n] else 9*Self(n-1)-15*Self(n-2)+6*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Feb 13 2016
  • Maple
    a:= n-> (Matrix([[27, 4, 2/3]]). Matrix([[9, 1, 0], [ -15, 0, 1], [6, 0, 0]])^n)[1, 3]: seq(a(n), n=1..30); # Alois P. Heinz, Mar 23 2009
  • Mathematica
    LinearRecurrence[{9, -15, 6}, {4, 27, 187}, 21] (* Jean-François Alcover, Feb 13 2016 *)

Formula

See A078099 for formula.
G.f.: x*(9*x-4-4*x^2) / (6*x^3-15*x^2+9*x-1). - Alois P. Heinz, Mar 23 2009

Extensions

More terms from Alois P. Heinz, Mar 23 2009
Name clarified by Andrew Howroyd, Jun 26 2017

A207993 Number of n X n 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any horizontal or vertical neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

1, 3, 41, 1302, 96831, 16932816, 6978332618, 6787438272198, 15595829208171337, 84713253582265127190, 1088296274542436098185362, 33079232010276428576508643620, 2379573338713223879592059518246838
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Comments

Diagonal of A207997.

Examples

			Some solutions for n=4
..0..1..0..1....0..1..2..0....0..1..2..0....0..1..2..0....0..1..2..1
..1..2..1..0....1..0..1..2....2..0..1..2....1..2..0..2....2..0..1..2
..2..0..2..1....2..1..2..0....1..2..0..1....2..0..1..0....1..2..0..1
..0..1..0..2....0..2..0..1....2..1..2..0....1..2..0..1....2..0..1..0
		

Programs

A207994 Number of nX5 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any horizontal or vertical neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

8, 81, 853, 9075, 96831, 1034073, 11045757, 117997043, 1260537911, 13466147569, 143857201093, 1536809621307, 16417559602831, 175386899980873, 1873638094198285, 20015860487662275, 213827138093982759
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Comments

Column 5 of A207997.

Examples

			Some solutions for n=4
..0..1..0..2..0....0..1..2..0..1....0..1..0..1..2....0..1..2..1..2
..1..0..2..1..2....2..0..1..2..0....1..2..1..2..1....1..2..0..2..0
..2..1..0..2..0....1..2..0..1..2....2..0..2..0..2....2..0..2..0..1
..0..2..1..0..2....2..0..2..0..1....1..2..1..2..0....1..2..1..2..0
		

Formula

a(n) = 16*a(n-1) -65*a(n-2) +92*a(n-3) -48*a(n-4) +8*a(n-5).
G.f.: -x*(8-47*x+77*x^2-44*x^3+8*x^4) / ( -1+16*x-65*x^2+92*x^3-48*x^4+8*x^5 ). - R. J. Mathar, Nov 23 2015

A207995 Number of nX6 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any horizontal or vertical neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

16, 243, 3891, 63267, 1034073, 16932816, 277458045, 4547477370, 74538711609, 1221819475953, 20027983390866, 328298744831580, 5381481886580865, 88213445048426316, 1445998260462433698, 23702862077090281716
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Comments

Column 6 of A207997.

Examples

			Some solutions for n=4
..0..1..2..0..2..0....0..1..2..0..1..2....0..1..2..0..1..0....0..1..2..0..1..2
..1..0..1..2..0..1....2..0..1..2..0..1....2..0..1..2..0..1....1..0..1..2..0..1
..0..1..0..1..2..0....0..1..2..1..2..0....1..2..0..1..2..0....2..1..2..0..1..2
..1..0..1..2..0..2....1..2..1..2..1..2....2..0..1..0..1..2....0..2..0..1..2..1
		

Formula

a(n) = 30*a(n-1) -291*a(n-2) +1278*a(n-3) -2901*a(n-4) +3519*a(n-5) -2152*a(n-6) +516*a(n-7).
G.f.: -x*(16-237*x+1257*x^2-3198*x^3+4206*x^4-2736*x^5+688*x^6) / ( -1+30*x-291*x^2+1278*x^3-2901*x^4+3519*x^5-2152*x^6+516*x^7 ). - R. J. Mathar, Nov 23 2015

A078101 1/6 of the number of ways of 3-coloring an (n-1) X n grid.

Original entry on oeis.org

1, 9, 187, 9075, 1034073, 277458045, 175605187731, 262459366542859, 927063711694234937, 7743238400519517700687, 152996488947929392223648350, 7153582340115101979222478030231, 791692010951982239786844983500390201, 207426783553049237691620430245372971070275
Offset: 2

Views

Author

N. J. A. Sloane, Dec 05 2002

Keywords

Comments

Also the number of 3-colorings of the P_{n-1} X P_n grid graph up to permutation of the colors. - Andrew Howroyd, Jun 26 2017

References

  • Michael S. Paterson (Warwick), personal communication.

Crossrefs

A diagonal of A078099 and A207997.

Programs

  • Mathematica
    M[1] = {{1}};
    M[m_] := M[m] = {{M[m - 1], Transpose[M[m - 1]]}, {Array[0 &, {2^(m - 2), 2^(m - 2)}], M[m - 1]}} // ArrayFlatten; W[m_] := M[m] + Transpose[M[m]];
    T[m_, 1] := 2^(m - 1);
    T[1, n_] := 2^(n - 1);
    T[m_, n_] := MatrixPower[ W[m], n - 1] // Flatten // Total;
    a[n_] := T[n - 1, n]/2;
    Table[Print[n]; a[n], {n, 2, 15}] (* Jean-François Alcover, Sep 16 2019 *)

Formula

See A078099 for formula.
a(n) = A207997(n-1, n) = A078099(n-1, n)/2. - Andrew Howroyd, Jun 26 2017

Extensions

a(7)-a(13) from Alois P. Heinz, Mar 25 2009
Name clarified and a(14)-a(15) from Andrew Howroyd, Jun 26 2017

A207996 Number of nX7 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any horizontal or vertical neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

32, 729, 17749, 441090, 11045757, 277458045, 6978332618, 175605187731, 4419979346851, 111261280858024, 2800819361992659, 70507189155056781, 1774944424628356230, 44682493917576202087, 1124839588414204665607
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Comments

Column 7 of A207997.

Examples

			Some solutions for n=4
..0..1..0..2..1..2..0....0..1..2..1..2..0..1....0..1..2..1..2..0..1
..2..0..1..0..2..1..2....2..0..1..2..0..2..0....1..2..1..2..0..1..2
..0..1..0..1..0..2..0....0..1..2..1..2..1..2....2..0..2..1..2..0..1
..2..0..2..0..1..0..1....1..0..1..2..1..2..0....0..1..0..2..0..1..2
		

Formula

a(n) = 55*a(n-1) -1109*a(n-2) +11330*a(n-3) -67206*a(n-4) +247404*a(n-5) -582440*a(n-6) +881876*a(n-7) -846764*a(n-8) +499200*a(n-9) -172400*a(n-10) +33152*a(n-11) -3264*a(n-12) +128*a(n-13).
G.f.: -x*(32 -1031*x +13142*x^2 -89204*x^3 +360470*x^4 -909704*x^5 +1454814*x^6 -1461492*x^7 +896144*x^8 -320568*x^9 +63472*x^10 -6400*x^11 +256*x^12) / ( -1 +55*x -1109*x^2 +11330*x^3 -67206*x^4 +247404*x^5 -582440*x^6 +881876*x^7 -846764*x^8 +499200*x^9 -172400*x^10 +33152*x^11 -3264*x^12 +128*x^13 ). - R. J. Mathar, Nov 23 2015

A078102 1/6 of the number of ways of 3-coloring an (n-2) X n grid.

Original entry on oeis.org

2, 27, 853, 63267, 11045757, 4547477370, 4419979346851, 10150938472416408, 55117503183129188479, 707887801249881516079368, 21511908182992495395699279579, 1547207013442473554135873920560606, 263429541331756165013316290711160389207
Offset: 3

Views

Author

N. J. A. Sloane, Dec 05 2002

Keywords

Comments

Also the number of 3-colorings of the P_{n-2} X P_n grid graph up to permutation of the colors. - Andrew Howroyd, Jun 26 2017

References

  • Michael S. Paterson (Warwick), personal communication.

Crossrefs

A diagonal of A078099 and A207997.

Programs

  • Mathematica
    M[1] = {{1}}; M[m_] := M[m] = {{M[m - 1], Transpose[M[m - 1]]}, {Array[0&, {2^(m - 2), 2^(m - 2)}], M[m - 1]}} // ArrayFlatten;
    W[m_] := M[m] + Transpose[M[m]];
    T[m_, 1] := 2^(m - 1); T[1, n_] := 2^(n - 1); T[m_, n_] := MatrixPower[ W[m], n - 1] // Flatten // Total;
    a[n_] := T[n - 2, n]/2;
    Table[a[n], {n, 3, 15}] (* Jean-François Alcover, Aug 27 2019 *)

Formula

See A078099 for formula.
a(n) = A207997(n-2, n) = A078099(n-2, n)/2. - Andrew Howroyd, Jun 26 2017

Extensions

a(7)-a(14) from Alois P. Heinz, Mar 24 2009
Name clarified and a(15) from Andrew Howroyd, Jun 26 2017
Previous Showing 11-18 of 18 results.