A222462
T(n,k) = number of n X k 0..7 arrays with no entry increasing mod 8 by 7 rightwards or downwards, starting with upper left zero.
Original entry on oeis.org
1, 7, 7, 49, 301, 49, 343, 12943, 12943, 343, 2401, 556549, 3418807, 556549, 2401, 16807, 23931607, 903055069, 903055069, 23931607, 16807, 117649, 1029059101, 238535974201, 1465295106499, 238535974201, 1029059101, 117649, 823543
Offset: 1
Table starts
......1.............7..................49........................343
......7...........301...............12943.....................556549
.....49.........12943.............3418807..................903055069
....343........556549...........903055069..............1465295106499
...2401......23931607........238535974201...........2377584520856755
..16807....1029059101......63007686842527........3857863258420747009
.117649...44249541343...16643060295393343.....6259760185235726701945
.823543.1902730277749.4396153388210813341.10157072698503130798653535
...
Some solutions for n=3, k=4:
..0..4..2..3....0..0..0..4....0..4..6..1....0..4..0..4....0..2..6..2
..0..0..5..6....0..0..4..6....0..0..1..5....0..0..6..0....0..0..2..3
..0..0..0..1....0..0..5..1....0..0..3..5....0..0..0..1....0..0..3..5
A078100
1/6 of the number of ways of 3-coloring a 4 X n grid.
Original entry on oeis.org
4, 27, 187, 1302, 9075, 63267, 441090, 3075255, 21440547, 149482638, 1042187067, 7266087315, 50658875658, 353191693599, 2462438631411, 17168025532662, 119694800484387, 834507453158019, 5818153224352338, 40563936024707079, 282810170576026755
Offset: 1
- Michael S. Paterson (Warwick), personal communication.
-
I:=[4,27,187]; [n le 3 select I[n] else 9*Self(n-1)-15*Self(n-2)+6*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Feb 13 2016
-
a:= n-> (Matrix([[27, 4, 2/3]]). Matrix([[9, 1, 0], [ -15, 0, 1], [6, 0, 0]])^n)[1, 3]: seq(a(n), n=1..30); # Alois P. Heinz, Mar 23 2009
-
LinearRecurrence[{9, -15, 6}, {4, 27, 187}, 21] (* Jean-François Alcover, Feb 13 2016 *)
A207993
Number of n X n 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any horizontal or vertical neighbor (colorings ignoring permutations of colors).
Original entry on oeis.org
1, 3, 41, 1302, 96831, 16932816, 6978332618, 6787438272198, 15595829208171337, 84713253582265127190, 1088296274542436098185362, 33079232010276428576508643620, 2379573338713223879592059518246838
Offset: 1
Some solutions for n=4
..0..1..0..1....0..1..2..0....0..1..2..0....0..1..2..0....0..1..2..1
..1..2..1..0....1..0..1..2....2..0..1..2....1..2..0..2....2..0..1..2
..2..0..2..1....2..1..2..0....1..2..0..1....2..0..1..0....1..2..0..1
..0..1..0..2....0..2..0..1....2..1..2..0....1..2..0..1....2..0..1..0
A207994
Number of nX5 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any horizontal or vertical neighbor (colorings ignoring permutations of colors).
Original entry on oeis.org
8, 81, 853, 9075, 96831, 1034073, 11045757, 117997043, 1260537911, 13466147569, 143857201093, 1536809621307, 16417559602831, 175386899980873, 1873638094198285, 20015860487662275, 213827138093982759
Offset: 1
Some solutions for n=4
..0..1..0..2..0....0..1..2..0..1....0..1..0..1..2....0..1..2..1..2
..1..0..2..1..2....2..0..1..2..0....1..2..1..2..1....1..2..0..2..0
..2..1..0..2..0....1..2..0..1..2....2..0..2..0..2....2..0..2..0..1
..0..2..1..0..2....2..0..2..0..1....1..2..1..2..0....1..2..1..2..0
A207995
Number of nX6 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any horizontal or vertical neighbor (colorings ignoring permutations of colors).
Original entry on oeis.org
16, 243, 3891, 63267, 1034073, 16932816, 277458045, 4547477370, 74538711609, 1221819475953, 20027983390866, 328298744831580, 5381481886580865, 88213445048426316, 1445998260462433698, 23702862077090281716
Offset: 1
Some solutions for n=4
..0..1..2..0..2..0....0..1..2..0..1..2....0..1..2..0..1..0....0..1..2..0..1..2
..1..0..1..2..0..1....2..0..1..2..0..1....2..0..1..2..0..1....1..0..1..2..0..1
..0..1..0..1..2..0....0..1..2..1..2..0....1..2..0..1..2..0....2..1..2..0..1..2
..1..0..1..2..0..2....1..2..1..2..1..2....2..0..1..0..1..2....0..2..0..1..2..1
A078101
1/6 of the number of ways of 3-coloring an (n-1) X n grid.
Original entry on oeis.org
1, 9, 187, 9075, 1034073, 277458045, 175605187731, 262459366542859, 927063711694234937, 7743238400519517700687, 152996488947929392223648350, 7153582340115101979222478030231, 791692010951982239786844983500390201, 207426783553049237691620430245372971070275
Offset: 2
- Michael S. Paterson (Warwick), personal communication.
-
M[1] = {{1}};
M[m_] := M[m] = {{M[m - 1], Transpose[M[m - 1]]}, {Array[0 &, {2^(m - 2), 2^(m - 2)}], M[m - 1]}} // ArrayFlatten; W[m_] := M[m] + Transpose[M[m]];
T[m_, 1] := 2^(m - 1);
T[1, n_] := 2^(n - 1);
T[m_, n_] := MatrixPower[ W[m], n - 1] // Flatten // Total;
a[n_] := T[n - 1, n]/2;
Table[Print[n]; a[n], {n, 2, 15}] (* Jean-François Alcover, Sep 16 2019 *)
A207996
Number of nX7 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any horizontal or vertical neighbor (colorings ignoring permutations of colors).
Original entry on oeis.org
32, 729, 17749, 441090, 11045757, 277458045, 6978332618, 175605187731, 4419979346851, 111261280858024, 2800819361992659, 70507189155056781, 1774944424628356230, 44682493917576202087, 1124839588414204665607
Offset: 1
Some solutions for n=4
..0..1..0..2..1..2..0....0..1..2..1..2..0..1....0..1..2..1..2..0..1
..2..0..1..0..2..1..2....2..0..1..2..0..2..0....1..2..1..2..0..1..2
..0..1..0..1..0..2..0....0..1..2..1..2..1..2....2..0..2..1..2..0..1
..2..0..2..0..1..0..1....1..0..1..2..1..2..0....0..1..0..2..0..1..2
A078102
1/6 of the number of ways of 3-coloring an (n-2) X n grid.
Original entry on oeis.org
2, 27, 853, 63267, 11045757, 4547477370, 4419979346851, 10150938472416408, 55117503183129188479, 707887801249881516079368, 21511908182992495395699279579, 1547207013442473554135873920560606, 263429541331756165013316290711160389207
Offset: 3
- Michael S. Paterson (Warwick), personal communication.
-
M[1] = {{1}}; M[m_] := M[m] = {{M[m - 1], Transpose[M[m - 1]]}, {Array[0&, {2^(m - 2), 2^(m - 2)}], M[m - 1]}} // ArrayFlatten;
W[m_] := M[m] + Transpose[M[m]];
T[m_, 1] := 2^(m - 1); T[1, n_] := 2^(n - 1); T[m_, n_] := MatrixPower[ W[m], n - 1] // Flatten // Total;
a[n_] := T[n - 2, n]/2;
Table[a[n], {n, 3, 15}] (* Jean-François Alcover, Aug 27 2019 *)
Comments