cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A370060 Array read by antidiagonals: T(n,k) is the number of achiral dissections of a polygon into n k-gons by nonintersecting diagonals rooted at a cell, n >= 1, k >= 3.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 2, 4, 2, 1, 1, 4, 4, 12, 5, 1, 1, 3, 6, 9, 18, 5, 1, 1, 5, 6, 26, 22, 55, 14, 1, 1, 4, 8, 21, 45, 52, 88, 14, 1, 1, 6, 8, 45, 51, 204, 140, 273, 42, 1, 1, 5, 10, 38, 84, 190, 380, 340, 455, 42, 1, 1, 7, 10, 69, 92, 500, 506, 1771, 969, 1428, 132
Offset: 1

Views

Author

Andrew Howroyd, Feb 08 2024

Keywords

Comments

The polygon prior to dissection will have n*(k-2)+2 sides.

Examples

			Array begins:
=============================================
n\k|  3   4   5    6    7    8    9    10 ...
---+-----------------------------------------
1  |  1   1   1    1    1    1    1     1 ...
2  |  1   1   1    1    1    1    1     1 ...
3  |  1   3   2    4    3    5    4     6 ...
4  |  2   4   4    6    6    8    8    10 ...
5  |  2  12   9   26   21   45   38    69 ...
6  |  5  18  22   45   51   84   92   135 ...
7  |  5  55  52  204  190  500  468   992 ...
8  | 14  88 140  380  506 1008 1240  2100 ...
9  | 14 273 340 1771 1950 6200 6545 15990 ...
  ...
		

Crossrefs

Columns k=3..6 are A208355(n-1), A124817(n-1), A369472, A370061.
Cf. A070914 (rooted), A295222 (oriented), A295259 (unoriented), A369929, A370062 (achiral unrooted).

Programs

  • PARI
    \\ here u is Fuss-Catalan sequence with p = k-1.
    u(n, k, r) = {r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)}
    T(n, k) = {if(k%2, if(n%2, u((n-1)/2, k, (k-1)/2), u(n/2-1, k, (k-1))), if(n%2, u((n-1)/2, k, k/2+1), u(n/2-1, k, k)) )}
    for(n=1, 9, for(k=3, 10, print1(T(n, k), ", ")); print);

Formula

T(n,k) = 2*A295259(n,k) - A295222(n,k).
T(n,2*k+1) = A370062(n,2*k+1).

A208101 Triangle read by rows: T(n,0) = 1; for n > 0: T(n,1) = n, for n>1: T(n,n) = T(n-1,n-2); T(n,k) = T(n-2,k-1) + T(n-1,k) for k: 1 < k < n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 2, 1, 4, 3, 5, 2, 1, 5, 4, 9, 5, 5, 1, 6, 5, 14, 9, 14, 5, 1, 7, 6, 20, 14, 28, 14, 14, 1, 8, 7, 27, 20, 48, 28, 42, 14, 1, 9, 8, 35, 27, 75, 48, 90, 42, 42, 1, 10, 9, 44, 35, 110, 75, 165, 90, 132, 42, 1, 11, 10, 54, 44, 154, 110
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 04 2012

Keywords

Comments

Another variant of Pascal's triangle, cf. A007318.

Examples

			The triangle begins:
0:                    1
1:                  1   1
2:                1   2   1
3:              1   3   2   2
4:            1   4   3   5   2
5:          1   5   4   9   5   5
6:        1   6   5  14   9  14   5
7:      1   7   6  20  14  28  14  14
8:    1   8   7  27  20  48  28  42  14
9:  1   9   8  35  27  75  48  90  42  42
		

Crossrefs

Cf. A208976 (row sums), A101461 (row max), A208983 (central), A208355 (right edge), A074909.

Programs

  • Haskell
    a208101 n k = a208101_tabl !! n !! k
    a208101_row n = a208101_tabl !! n
    a208101_tabl =  iterate
       (\row -> zipWith (+) ([0,1] ++ init row) (row ++ [0])) [1]
  • Mathematica
    T[, 0] = 1; T[n, 1] := n; T[n_, n_] := T[n-1, n-2]; T[n_, k_] /; 1Jean-François Alcover, Feb 03 2018 *)

A296664 Table read by rows, diagonals of powers of Toeplitz matrices generated by the characteristic function of 1, T(n, k) for n >= 0 and 0 <= k <= 2*floor(n/2).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 2, 2, 5, 6, 5, 2, 5, 9, 10, 9, 5, 5, 14, 19, 20, 19, 14, 5, 14, 28, 34, 35, 34, 28, 14, 14, 42, 62, 69, 70, 69, 62, 42, 14, 42, 90, 117, 125, 126, 125, 117, 90, 42, 42, 132, 207, 242, 251, 252, 251, 242, 207, 132, 42
Offset: 0

Views

Author

Peter Luschny, Dec 19 2017

Keywords

Comments

Let v be the characteristic function of 1 (A063524) and M(n) for n >= 0 the symmetric Toeplitz matrix generated by the initial segment of v, then row n is the main diagonal of M(n)^n if n is even or the diagonal next to the main diagonal if n is odd. Note that the antidiagonals of M(n)^n are the rows of Pascal's triangle A007318.

Examples

			The first few matrices M(n)^n are:
n=0   n=1     n=2       n=3         n=4
|1|  |0 1|  |1 0 1|  |0 2 0 1|  |2 0 3 0 1|
     |1 0|  |0 2 0|  |2 0 3 0|  |0 5 0 4 0|
            |1 0 1|  |0 3 0 2|  |3 0 6 0 3|
                     |1 0 2 0|  |0 4 0 5 0|
                                |1 0 3 0 2|
The triangle starts:
0: [ 1]
1: [ 1]
2: [ 1,  2,   1]
3: [ 2,  3,   2]
4: [ 2,  5,   6,   5,   2]
5: [ 5,  9,  10,   9,   5]
6: [ 5, 14,  19,  20,  19,  14,  5]
7: [14, 28,  34,  35,  34,  28,  14]
8: [14, 42,  62,  69,  70,  69,  62, 42, 14]
9: [42, 90, 117, 125, 126, 125, 117, 90, 42]
		

Crossrefs

Cf. A000108, A001405, A208355, A296663 (row sums), A296662 (odd rows), A296666 (even rows).

Programs

  • Maple
    v := n -> `if`(n=1, 1, 0):
    M := n -> LinearAlgebra:-ToeplitzMatrix([seq(v(j), j=0..n)], symmetric):
    seq(convert(ArrayTools:-Diagonal(M(n)^n, n mod 2), list), n=0..10);
  • Mathematica
    v[n_] := If[n == 1, 1, 0];
    m[n_] := MatrixPower[ToeplitzMatrix[Table[v[k], {k, 0, n}]], n];
    d[n_] := If[n == 0, {1}, Diagonal[m[n], Mod[n, 2]]];
    Table[d[n], {n, 0, 10}] // Flatten
  • Sage
    def T(n, k):
        h, e = n//2, n%2 == 0
        a = binomial(n, h) if e else binomial(2*h+1, h+1)
        if k > h:
            b = binomial(n, k-h-1) if e else binomial(2*h+1, k-h-1)
        else:
            b = binomial(n, h+k+1) if e else binomial(2*h+1, h-k-1)
        return a - b
    for n in (0..9): print([T(n, k) for k in (0..2*(n//2))])

Formula

T(n, 0) = T(n, 2*floor(n/2)) = A208355(n) = A000108(floor((n+1)/2)).
T(n, floor(n/2)) = A001405(n).
Further formulas can be found in A296662 and A296666 for the cases n odd and n even.
Previous Showing 11-13 of 13 results.