cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-46 of 46 results.

A226113 Composite squarefree numbers n such that the ratio (n - 1/3)/(p(i) + 1/3) is an integer, where p(i) are the prime factors of n.

Original entry on oeis.org

773227, 13596427, 26567147, 140247467, 525558107, 1390082027, 1847486667, 2514565387, 3699765755, 4060724267, 4520219947, 6185512667, 6480142667, 8328046827, 9951353867, 10268992067, 11720901387, 14149448387, 14913513067, 21926400427, 22367433387, 24260249387
Offset: 1

Views

Author

Paolo P. Lava, May 29 2013

Keywords

Comments

Also composite squarefree numbers n such that (3*p(i)+1) | (3*n-1).

Examples

			The prime factors of 773227 are 7, 13, 29 and 293. We see that (773227 - 1/3)/(7 + 1/3) = 231968, (773227 - 1/3)/(13 + 1/3) = 57992, (773227 - 1/3)/(29 + 1/3) = 26360 and (773227 - 1/3)/(293 + 1/3) = 2636. Hence 773227 is in the sequence.
The prime factors of 1128387 are 3, 13 and 28933. We see that
(1128387 - 1/3)/(3 + 1/3) = 338516, (1128387 - 1/3)/(13 + 1/3) = 84629 but (1128387 - 1/3)/(28933 + 1/3) = 84629/2170. Hence 1128387 is not in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory); A226113:=proc(i, j) local c, d, n, ok, p;
    for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;
    for d from 1 to nops(p) do if p[d][2]>1 or not type((n-j)/(p[d][1]+j),integer) then ok:=0; break; fi; od;
    if ok=1 then print(n); fi; fi; od; end: A226113(10^9,1/3);

Extensions

a(5)-a(22) from Giovanni Resta, Jun 02 2013

A227974 Minimum composite squarefree numbers k such that p(i)+n divides k-n, for n=1, 2, 3, 4,..., where p(i) are the prime factors of k .

Original entry on oeis.org

385, 182, 195, 1054, 165, 6, 1015, 4958, 2193, 10, 5159, 113937, 5593, 14, 15, 196009, 3657, 6318638, 2755, 1227818, 21, 22, 2795, 152358, 12121, 26, 21827, 17578, 36569, 30, 38335, 457907, 33, 34, 35
Offset: 1

Views

Author

Paolo P. Lava, Aug 02 2013

Keywords

Comments

Fixed points are the squarefree semiprimes.

Examples

			For n=3 the minimum k is 195. Prime factors of 195 are 3, 5 and 13. We have: 195 - 3 = 192, 3 + 3 = 6 and 192 / 6 = 32, 5 + 3 = 8 and 192 / 8 = 24, 13 + 3 = 16 and 192 / 16 = 12.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(i) local c, d, k, n, ok, p; for k from 1 to i do
    for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;
    for d from 1 to nops(p) do if p[d][2]>1 then ok:=0; break; fi;
    if  not type((n-k)/(p[d][1]+k), integer) then ok:=0; break; fi; od;
    if ok=1 then print(n); break; fi; fi; od; od; end: P(10^6);

A306685 Composite squarefree numbers k such that k^2-1 is divisible by p-1 and p+1, where p are all the prime factors of k.

Original entry on oeis.org

35, 1189, 3059, 6479, 8569, 30889, 39689, 51271, 84419, 133399, 272251, 321265, 430199, 544159, 564719, 569449, 585311, 608399, 1033241, 1212751, 1930499, 3131029, 7056721, 7110179, 7639919, 8740601, 11255201, 15857855, 17966519, 18996769, 22427999, 32871761, 34966009
Offset: 1

Views

Author

Paolo P. Lava, Mar 05 2019

Keywords

Examples

			Prime factors of 35 are 5, 7 and 35^2-1 = 1224, 1124/4 = 306, 1124/6 = 204, 1124/8 = 153.
Prime factors of 1189 are 29, 41 and 1189^2-1 = 1413720, 1413720/28 = 50490, 1413720/30 = 47124, 1413720/40 = 35343, 1413720/42 = 33660.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,ok,n; for n from 2 to q do
    if not isprime(n) and issqrfree(n) then a:=factorset(n); ok:=1;
    for k from 1 to nops(a) do if frac((n^2-1)/(a[k]+1))>0 or frac((n^2-1)/(a[k]-1))>0 then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: P(10^9);
  • Mathematica
    csfQ[n_]:=CompositeQ[n]&&SquareFreeQ[n]&&Union[Mod[n^2-1,Flatten[{#+1, #-1}&/@ FactorInteger[n][[All,1]]]]]=={0}; Select[Range[35*10^6],csfQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 07 2020 *)
  • PARI
    isok(n) = {if (issquarefree(n) && !isprime(n) && (n>1), my(f = factor(n)[,1], x = n^2-1); for (k=1, #f, if ((x % (f[k]-1)) || (x % (f[k]+1)), return (0));); return (1);); return (0);} \\ Michel Marcus, Mar 12 2019

Extensions

More terms from Giovanni Resta, Mar 06 2019

A306723 Composite squarefree numbers k such that k^2+1 is divisible by p-1, where p are all the prime factors of k.

Original entry on oeis.org

33, 36003, 426747, 220067817
Offset: 1

Views

Author

Paolo P. Lava, Mar 06 2019

Keywords

Comments

Tested up to 3*10^10. - Giovanni Resta, Mar 06 2019

Examples

			Prime factors of 33 are 3, 11 and 33^2+1 = 1090, 1090/2 = 545, 1090/10 = 109.
Prime factors of 220067817 are 3, 59, 131, 9491 and 220067817^2+1 = 48429844079145490, 48429844079145490/2 = 24214922039572745, 48429844079145490/58 = 834997311709405, 48429844079145490/130 = 372537262147273, 48429844079145490/9490 = 5103250166401.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,ok,n;
    for n from 1 to q do if not isprime(n) and issqrfree(n) then a:=factorset(n); ok:=1; for k from 1 to nops(a) do if frac((n^2+1)/(a[k]+1))>0 then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: P(10^20);
  • PARI
    isok(n) = {if (issquarefree(n) && !isprime(n) && (n>1), my(f = factor(n)[,1], x = n^2+1); for (k=1, #f, if ((x % (f[k]-1)), return (0));); return (1);); return (0);} \\ Michel Marcus, Mar 12 2019

Extensions

a(4) from Giovanni Resta, Mar 06 2019

A307217 Semiprimes p*q such that 2^(p+q) == 1 (mod p*q).

Original entry on oeis.org

9, 15, 35, 119, 5543, 74447, 90859, 110767, 222179, 389993, 1526849, 2927297, 3626699, 4559939, 24017531, 137051711, 160832099, 229731743, 627699239, 880021141, 1001124539, 1041287603, 1104903617, 1592658611, 1717999139, 8843679683, 15575602979, 15614760199, 20374337479
Offset: 1

Views

Author

Thomas Ordowski, Mar 29 2019

Keywords

Comments

For k > 9, these are semiprimes k such that 2^(k+1) == 1 (mod k): semiprimes in A187787.
In this sequence, only 9 is a perfect square. - Jinyuan Wang, Mar 30 2019

Crossrefs

Programs

Extensions

a(7)-a(18) from Amiram Eldar, Mar 29 2019
a(19)-a(29) from Daniel Suteu, Mar 29 2019

A382484 Least composite squarefree numbers k > n such that p + n divides k - n, for each prime p dividing k.

Original entry on oeis.org

385, 182, 195, 1054, 165, 26781, 1015, 4958, 2193, 79222, 5159, 113937, 5593, 160937, 6351, 196009, 3657, 6318638, 2755, 1227818, 12669, 41302, 2795, 152358, 12121, 366821, 21827, 17578, 36569, 12677695, 38335, 457907, 2553, 15334, 141155, 69722351, 1045, 14003, 4823, 2943805
Offset: 1

Views

Author

Paolo P. Lava, Mar 29 2025

Keywords

Examples

			a(20) = 1227818 = 2 * 19 * 79 * 409 and
  (1227818 - 20) /(2 + 20) = 55809;
  (1227818 - 20) /(19 + 20) = 31482;
  (1227818 - 20) /(79 + 20) = 12402;
  (1227818 - 20) /(409 + 20) = 2862.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local d,k,ok,n,p;
    for n from 1 to 17 do for k from n+1 to q do
    if issqrfree(k) and not isprime(k) then p:=factorset(k); ok:=1;
    for d from 1 to nops(p) do if frac((k-n)/(p[d]+n))>0 then ok:=0;
    break; fi; od; if ok=1 then lprint(n,k); break; fi; fi; od; od; end: P(10^8);
  • PARI
    isok(k,n) = if (!issquarefree(k) || isprime(k), return(0)); my(f=factor(k)[,1]); for (i=1, #f, if ((k-n) % (f[i]+n), return(0));); return(1);
    a(n) = my(k=n+1); while (!isok(k, n), k++); k; \\ Michel Marcus, Mar 30 2025

Extensions

More terms from Michel Marcus, Mar 30 2025
Previous Showing 41-46 of 46 results.