cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 66 results. Next

A317884 Number of series-reduced achiral free pure multifunctions (with empty expressions allowed) with one atom and n positions.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 14, 26, 47, 87, 160, 295, 540, 997, 1832, 3369, 6197, 11406, 20975, 38594, 70991, 130610, 240275, 442043, 813184, 1496053, 2752251, 5063319, 9314879, 17136632, 31526032, 57998423, 106699160, 196294065, 361120800, 664352454, 1222204958
Offset: 1

Views

Author

Gus Wiseman, Aug 09 2018

Keywords

Comments

A series-reduced achiral expression (SRAE) is either (case 1) the leaf symbol "o", or (case 2) a possibly empty but not unitary expression of the form h[g, ..., g], where h and g are SRAEs. The number of positions in an SRAE is the number of brackets [...] plus the number of o's.
Also the number of series-reduced achiral Mathematica expressions with one atom and n positions.

Examples

			The a(6) = 8 SRAEs:
  o[o,o,o,o]
  o[o[],o[]]
  o[][o,o,o]
  o[][][o,o]
  o[o,o,o][]
  o[][o,o][]
  o[o,o][][]
  o[][][][][]
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 1, a(n-1)+add(a(j)*add(
          a(d), d=numtheory[divisors](n-j-1) minus {n-j-1}), j=1..n-1))
        end:
    seq(a(n), n=1..45);  # Alois P. Heinz, Sep 05 2018
  • Mathematica
    allAchExprSR[n_] := If[n == 1, {"o"}, Join @@ Cases[Table[PR[k, n - k - 1], {k, n - 1}], PR[h_, g_] :> Join @@ Table[Apply @@@ Tuples[{allAchExprSR[h], Select[Tuples[allAchExprSR /@ p], SameQ @@ # &]}], {p, If[g == 0, {{}}, Join @@ Permutations /@ Rest[IntegerPartitions[g]]]}]]]; Table[Length[allAchExprSR[n]], {n, 12}]
    (* Second program: *)
    a[n_] := a[n] = If[n == 1, 1, a[n-1] + Sum[a[j]*DivisorSum[
         n-j-1, If[# < n-j-1, a[#], 0]&], {j, 1, n-2}]];
    Array[a, 45] (* Jean-François Alcover, May 17 2021, after Alois P. Heinz *)
  • PARI
    seq(n)={my(p=O(x)); for(n=1, n, p = x + p*x*(1 + sum(k=2, n-2, subst(p + O(x^(n\k+1)), x, x^k)) ) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018
    
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=v[n-1] + sum(i=1, n-2, v[i]*sumdiv(n-i-1, d, if(dAndrew Howroyd, Aug 19 2018

Formula

a(1) = 1; a(n > 1) = a(n-1) + Sum_{0 < k < n-1} a(k) * Sum_{d|(n-k-1), d < n-k-1} a(d).

Extensions

Terms a(13) and beyond from Andrew Howroyd, Aug 19 2018

A317885 Number of series-reduced free pure achiral multifunctions with one atom and n positions.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 3, 4, 7, 9, 14, 21, 32, 45, 69, 103, 153, 224, 338, 500, 746, 1107, 1645, 2447, 3652, 5413, 8052, 11993, 17834, 26500, 39447, 58655, 87240, 129772, 193001, 287034, 427014, 635048, 944501, 1404910, 2089633, 3107864, 4622670, 6875533
Offset: 1

Views

Author

Gus Wiseman, Aug 09 2018

Keywords

Comments

A series-reduced free pure achiral multifunction (SRAM) is either (case 1) the leaf symbol "o", or (case 2) a nonempty and non-unitary expression of the form h[g, ..., g] where h and g are SRAMs. The number of positions in a SRAM is the number of brackets [...] plus the number of o's.

Examples

			The a(10) = 7 SRAMs:
  o[o[o,o],o[o,o]]
  o[o,o][o,o][o,o]
  o[o,o][o,o,o,o,o]
  o[o,o,o][o,o,o,o]
  o[o,o,o,o][o,o,o]
  o[o,o,o,o,o][o,o]
  o[o,o,o,o,o,o,o,o]
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[n==1,1,Sum[a[k]*Sum[a[d],{d,Most[Divisors[n-k-1]]}],{k,n-2}]];
    Array[a,12]
  • PARI
    seq(n)={my(p=O(x)); for(n=1, n, p = x + p*x*sum(k=2, n-2, subst(p + O(x^(n\k+1)), x, x^k)) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018
    
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=sum(i=1, n-2, v[i]*sumdiv(n-i-1, d, if(dAndrew Howroyd, Aug 19 2018

Formula

a(1) = 1; a(n > 1) = Sum_{0 < k < n - 1} a(k) * Sum_{d|(n - k - 1), d < n - k - 1} a(d).

Extensions

Terms a(17) and beyond from Andrew Howroyd, Aug 19 2018

A318228 Number of inequivalent leaf-colorings of planted achiral trees with n nodes.

Original entry on oeis.org

1, 1, 3, 6, 13, 20, 43, 58, 115, 171, 323, 379, 1034, 1135, 2321, 4327, 8915, 9212, 33939, 34429, 128414, 234017, 417721, 418976, 2931624, 5096391, 11770830, 20357876, 64853630, 64858195
Offset: 1

Views

Author

Gus Wiseman, Aug 21 2018

Keywords

Comments

In a planted achiral tree, all branches directly under any given branch are identical.

Examples

			Inequivalent representatives of the a(5) = 13 leaf-colorings:
  (1111)  ((111))  ((1)(1))  (((11)))  ((((1))))
  (1112)  ((112))  ((1)(2))  (((12)))
  (1122)  ((123))
  (1123)
  (1234)
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    G(v)={my(t=2, p=sv(1)); for(i=1, #v, my(d=v[i]); if(d>1, p=sApplyCI(symGroupCycleIndex(d), d, p, t)); t=t*d+1); p}
    cycleIndex(n)={my(recurse(r,v)=if(r==1, G(v), sumdiv(r-1, d, self()((r-1)/d, concat(d,v))))); recurse(n,[])}
    a(n)={StructsByCycleIndex(n, cycleIndex(n), n)} \\ Andrew Howroyd, Dec 13 2020

Extensions

a(9)-a(30) from Andrew Howroyd, Dec 11 2020

A318612 Matula-Goebel numbers of powerful rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 23, 25, 27, 31, 32, 36, 49, 53, 59, 64, 67, 72, 81, 83, 97, 100, 103, 108, 121, 125, 127, 128, 131, 144, 151, 196, 200, 216, 225, 227, 241, 243, 256, 277, 288, 289, 311, 324, 331, 343, 359, 361, 392, 400, 419, 431, 432
Offset: 1

Views

Author

Gus Wiseman, Aug 30 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. A positive integer n is a Matula-Goebel number of a powerful rooted tree iff either n = 1 or n is a prime number whose prime index is a Matula-Goebel number of a powerful rooted tree or n is a powerful number (meaning its prime multiplicities are all greater than 1) whose prime indices are all Matula-Goebel numbers of powerful rooted trees.

Examples

			The sequence of all powerful rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   7: ((oo))
   8: (ooo)
   9: ((o)(o))
  11: ((((o))))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
  31: (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    powgoQ[n_]:=Or[n==1,If[PrimeQ[n],powgoQ[PrimePi[n]],And[Min@@FactorInteger[n][[All,2]]>1,And@@powgoQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[1000],powgoQ]

A330218 Least BII-number of a set-system with n distinct representatives obtainable by permuting the vertices.

Original entry on oeis.org

0, 5, 12, 180, 35636, 13
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets of positive integers.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The sequence of set-systems together with their BII-numbers begins:
      0: {}
      5: {{1},{1,2}}
     12: {{1,2},{3}}
    180: {{1,2},{1,3},{2,3},{4}}
  35636: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{5}}
     13: {{1},{1,2},{3}}
		

Crossrefs

Positions of first appearances in A330231.
The MM-number version is A330230.
Achiral set-systems are counted by A083323.
BII-numbers of fully chiral set-systems are A330226.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Apply[Rule,Table[{p[[i]],i},{i,Length[p]}],{1}])],{p,Permutations[Union@@m]}]];
    dv=Table[Length[graprms[bpe/@bpe[n]]],{n,0,1000}];
    Table[Position[dv,i][[1,1]]-1,{i,First[Split[Union[dv],#1+1==#2&]]}]

A331967 Matula-Goebel numbers of lone-child-avoiding achiral rooted trees.

Original entry on oeis.org

1, 4, 8, 16, 32, 49, 64, 128, 256, 343, 361, 512, 1024, 2048, 2401, 2809, 4096, 6859, 8192, 16384, 16807, 17161, 32768, 51529, 65536, 96721, 117649, 130321, 131072, 148877, 262144, 516961, 524288, 823543, 1048576, 2097152, 2248091, 2476099, 2621161, 4194304
Offset: 1

Views

Author

Gus Wiseman, Feb 06 2020

Keywords

Comments

Lone-child-avoiding means there are no unary branchings.
In an achiral rooted tree, the branches of any given vertex are all equal.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one and all numbers of the form prime(j)^k where k > 1 and j is already in the sequence.

Examples

			The sequence of all lone-child-avoiding achiral rooted trees together with their Matula-Goebel numbers begins:
      1: o
      4: (oo)
      8: (ooo)
     16: (oooo)
     32: (ooooo)
     49: ((oo)(oo))
     64: (oooooo)
    128: (ooooooo)
    256: (oooooooo)
    343: ((oo)(oo)(oo))
    361: ((ooo)(ooo))
    512: (ooooooooo)
   1024: (oooooooooo)
   2048: (ooooooooooo)
   2401: ((oo)(oo)(oo)(oo))
   2809: ((oooo)(oooo))
   4096: (oooooooooooo)
   6859: ((ooo)(ooo)(ooo))
   8192: (ooooooooooooo)
  16384: (oooooooooooooo)
  16807: ((oo)(oo)(oo)(oo)(oo))
  17161: ((ooooo)(ooooo))
  32768: (ooooooooooooooo)
  51529: (((oo)(oo))((oo)(oo)))
  65536: (oooooooooooooooo)
  96721: ((oooooo)(oooooo))
		

Crossrefs

A subset of A025475 (nonprime prime powers).
The enumeration of these trees by vertices is A167865.
Not requiring lone-child-avoidance gives A214577.
The semi-achiral version is A320269.
The semi-lone-child-avoiding version is A331992.
Achiral rooted trees are counted by A003238.
MG-numbers of planted achiral rooted trees are A280996.
MG-numbers of lone-child-avoiding rooted trees are A291636.

Programs

  • Mathematica
    msQ[n_]:=n==1||!PrimeQ[n]&&PrimePowerQ[n]&&And@@msQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[10000],msQ]

Formula

Intersection of A214577 (achiral) and A291636 (lone-child-avoiding).

A358506 Matula-Goebel number of the n-th standard ordered rooted tree.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 6, 8, 7, 10, 9, 12, 10, 12, 12, 16, 11, 14, 15, 20, 15, 18, 18, 24, 14, 20, 18, 24, 20, 24, 24, 32, 13, 22, 21, 28, 25, 30, 30, 40, 21, 30, 27, 36, 30, 36, 36, 48, 22, 28, 30, 40, 30, 36, 36, 48, 28, 40, 36, 48, 40, 48, 48, 64, 13, 26, 33, 44
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2022

Keywords

Comments

First differs from A333219 at a(65) = 13, A333219(65) = 17.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

Examples

			The first eight standard ordered trees are: o, (o), ((o)), (oo), (((o))), ((o)o), (o(o)), (ooo), with Matula-Goebel numbers: 1, 2, 3, 4, 5, 6, 6, 8.
		

Crossrefs

For binary instead of standard encoding we have A127301.
There are exactly A206487(n) appearances of n.
For binary instead of Matula-Goebel encoding we have A358505.
Positions of first appearances are A358522, sorted A358521.
A000108 counts ordered rooted trees, unordered A000081.
A214577 and A358377 rank trees with no permutations.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    mgnum[t_]:=If[t=={},1,Times@@Prime/@mgnum/@t];
    Table[mgnum[srt[n]],{n,100}]

A280994 Triangle read by rows giving Matula-Goebel numbers of planted achiral trees with n nodes.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 23, 31, 32, 53, 59, 67, 25, 27, 49, 64, 83, 127, 131, 241, 277, 331, 97, 103, 128, 227, 311, 431, 709, 739, 1523, 1787, 2221, 81, 121, 256, 289, 361, 509, 563, 719, 1433, 2063, 3001, 5381, 5623, 12763, 15299, 19577
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2017

Keywords

Comments

An achiral tree is either (case 1) a single node or (case 2) a finite constant sequence (t,t,..,t) of achiral trees. Only in case 2 is an achiral tree considered to be a generalized Bethe tree (according to A214577).

Examples

			Triangle begins:
1,
2,
3, 4,
5, 7, 8,
9, 11, 16, 17, 19,
23, 31, 32, 53, 59, 67,
25, 27, 49, 64, 83, 127, 131, 241, 277, 331.
		

Crossrefs

Programs

  • Mathematica
    nn=7;MGNumber[[]]:=1;MGNumber[x:[__]]:=If[Length[x]===1,Prime[MGNumber[x[[1]]]],Times@@Prime/@MGNumber/@x];
    cits[n_]:=If[n===1,{1},Join@@Table[ConstantArray[#,(n-1)/d]&/@cits[d],{d,Divisors[n-1]}]];
    Table[Sort[MGNumber/@(cits[n]/.(1->{}))],{n,nn}]

A280996 Prime Matula-Goebel numbers of generalized Bethe trees.

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 19, 23, 31, 53, 59, 67, 83, 97, 103, 127, 131, 227, 241, 277, 311, 331, 419, 431, 509, 563, 661, 691, 709, 719, 739, 1433, 1523, 1543, 1619, 1787, 1879, 2063, 2221, 2309, 2437, 2897, 3001, 3637, 3671, 3803, 4091, 4637, 4943, 5189, 5381
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2017

Keywords

Comments

Also prime numbers p whose index pi(p) is the Matula-Goebel number of a planted achiral tree.
An alternative definition: prime(n) is in the sequence iff n is a perfect power of a prime number already in the sequence.

Examples

			a(n) = prime(Product_{i in y} a(i)) where y is the n-th partition in the following sequence, which spans all constant partitions: 1,2,11,3,4,111,22,5,1111,6,7,8,33,222,9,11111,44,...
		

Crossrefs

Programs

  • Mathematica
    nn=10000;
    BTQ[n_]:=Or[n===1,MatchQ[PrimePi/@FactorInteger[n][[All,1]],{_?BTQ}]];
    Prime/@Select[Range[PrimePi[nn]],BTQ]

Formula

a(1) = 2; a(n+1) = prime(A214577(n)).

A298305 Matula-Goebel numbers of rooted trees with strictly thinning limbs.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 12, 16, 18, 24, 27, 28, 32, 36, 42, 48, 52, 54, 56, 63, 64, 72, 78, 81, 84, 92, 96, 98, 104, 108, 112, 117, 126, 128, 138, 144, 147, 152, 156, 162, 168, 182, 184, 189, 192, 196, 207, 208, 216, 224, 228, 234, 243, 252, 256, 273, 276, 288, 294
Offset: 1

Views

Author

Gus Wiseman, Jan 16 2018

Keywords

Comments

An unlabeled rooted tree has strictly thinning limbs if its outdegrees are strictly decreasing from root to leaves.

Examples

			Sequence of trees begins:
1  o
2  (o)
4  (oo)
6  (o(o))
8  (ooo)
9  ((o)(o))
12 (oo(o))
16 (oooo)
18 (o(o)(o))
24 (ooo(o))
27 ((o)(o)(o))
28 (oo(oo))
32 (ooooo)
36 (oo(o)(o))
42 (o(o)(oo))
48 (oooo(o))
52 (oo(o(o)))
54 (o(o)(o)(o))
56 (ooo(oo))
63 ((o)(o)(oo))
64 (oooooo)
72 (ooo(o)(o))
78 (o(o)(o(o)))
81 ((o)(o)(o)(o))
84 (oo(o)(oo))
92 (oo((o)(o)))
96 (ooooo(o))
98 (o(oo)(oo))
		

Crossrefs

Programs

  • Mathematica
    MGtree[n_]:=If[n===1,{},MGtree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    strthinQ[t_]:=And@@Cases[t,b_List:>Length[b]>Max@@Length/@b,{0,Infinity}];
    Select[Range[200],strthinQ[MGtree[#]]&]
Previous Showing 31-40 of 66 results. Next