cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A215635 a(n) = - 12*a(n-1) - 54*a(n-2) - 112*a(n-3) - 105*a(n-4) -36*a(n-5) - 2*a(n-6), with a(0)=3, a(1)=-6, a(2)=18, a(3)=-60, a(4)=210, a(5)=-756.

Original entry on oeis.org

3, -6, 18, -60, 210, -756, 2772, -10296, 38610, -145860, 554268, -2116296, 8112462, -31201644, 120347532, -465328200, 1803025410, -6999149124, 27213719148, -105960069864, 413078158350, -1612098272460, 6297409350492, -24620247483624, 96324799842498, -377102656201956, 1477141800784668
Offset: 0

Views

Author

Roman Witula, Aug 18 2012

Keywords

Comments

The Berndt-type sequence number 3 for the argument 2*Pi/9 defined by the relation: X(n) = a(n) + b(n)*sqrt(2), where X(n) := ((cos(Pi/24))^(2*n) + (cos(7*Pi/24))^(2*n) + (cos(3*Pi/8))^(2*n))*(-4)^n. We have b(n) = A215636(n).
We note that above formula is the Binet form of the following recurrence sequence: X(n+3) + 6*X(n+2) + 9*X(n+1) + (2 + sqrt(2))*X(n) = 0, which is a special type of the sequence X(n)=X(n;g) defined in the comments to A215634 for g:=Pi/24. The sequences a(n) and b(n) satisfy the following system of recurrence equations: a(n) = -b(n+3)-6*b(n+2)-9*b(n+1)-2*b(n), 2*b(n) = -a(n+3)-6*a(n+2)-9*a(n+1)-2*a(n).
There exists an amazing relation: (-1)^n*a(n)=3*A000984(n) for every n=0,1,...,11 and 3*A000984(12)-a(12)=6.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-12,-54,-112,-105,-36,-2}, {3,-6,18,-60,210,-756}, 50]
  • PARI
    Vec((3+30*x+108*x^2+168*x^3+105*x^4+18*x^5) /(1+12*x+54*x^2+112*x^3+105*x^4+36*x^5+2*x^6)+O(x^99)) \\ Charles R Greathouse IV, Oct 01 2012

Formula

G.f.: (3+30*x+108*x^2+168*x^3+105*x^4+18*x^5) / (1+12*x+54*x^2+112*x^3+105*x^4+36*x^5+2*x^6).

A214954 a(n) = 3*a(n-1) + 6*a(n-2) + a(n-3), with a(0) = 0, a(1) = 2, and a(2) = 7.

Original entry on oeis.org

0, 2, 7, 33, 143, 634, 2793, 12326, 54370, 239859, 1058123, 4667893, 20592276, 90842309, 400748476, 1767891558, 7799007839, 34405121341, 151777302615, 669561643730, 2953753868221, 13030408769658, 57483311162030, 253586139972259, 1118688695658615
Offset: 0

Views

Author

Roman Witula, Jul 30 2012

Keywords

Comments

Ramanujan-type sequence number 5 for the argument 2*Pi/9 is defined by the following relation: 81^(1/3)*a(n)=(c(1)/c(2))^(n + 1/3) + (c(2)/c(4))^(n + 1/3) + (c(4)/c(1))^(n + 1/3), where c(j) := Cos(2Pi*j/9) - for the proof see Witula's et al. papers. We have a(n)=cx(3n+1), where the sequence cx(n) and its two conjugate sequences ax(n) and bx(n) are defined in the comments to the sequence A214779. We note that ax(3n+1)=bx(3n+1)=0. Further we have ax(3n)=A214778(n), bx(3n)=cx(3n)=0 and bx(3n-1)=A214951(n), ax(3n-1)=cx(3n-1)=0.

References

  • R. Witula, E. Hetmaniok, D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012. (in review)

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, 6, 1}, {0, 2, 7}, 40] (* T. D. Noe, Jul 30 2012 *)
    CoefficientList[Series[(2x+x^2)/(1-3x-6x^2-x^3),{x,0,30}],x] (* Harvey P. Dale, Sep 13 2021 *)
  • PARI
    Vec((2*x+x^2)/(1-3*x-6*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Oct 01 2012

Formula

G.f.: (2*x+x^2)/(1-3*x-6*x^2-x^3).

A217052 a(n) = 3*a(n-1) + 24*a(n-2) + a(n-3), with a(0)=a(1)=1, and a(2)=19.

Original entry on oeis.org

1, 1, 19, 82, 703, 4096, 29242, 186733, 1266103, 8309143, 55500634, 367187437, 2441886670, 16193659132, 107553444913, 713750040577, 4738726458775, 31453733795086, 208804386436435, 1386041496850144, 9200883498819958, 61076450807299765, 405436597890428431
Offset: 0

Views

Author

Roman Witula, Sep 25 2012

Keywords

Comments

The Ramanujan type sequence number 10 for the argument 2*Pi/9 defined by the relation a(n) = ((1/3 - c(1))^n + (1/3 - c(2))^n + (1/3 - c(4))^n)*3^(n-1), where c(j) := 2*cos(2*Pi*j/9). We note that c(4) = -cos(Pi/9). The conjugate with a(n) are sequences A217053 and A217069.
For more informations about connections a(n) with these two sequences - see comments in A217053.
The 3-valuation of the sequence a(n) is equal to (1).

Examples

			We have a(4)=37*a(2) and a(5) = 2^(12), which implies (1/3 - c(1))^4 + (1/3 - c(2))^4 + (1/3 - c(4))^4 = (37/9)*((1/3 - c(1))^2 + (1/3 - c(2))^2 + (1/3 - c(4))^2) = (37/27)*19 = 703/27, (1/3 - c(1))^5 + (1/3 - c(2))^5 + (1/3 - c(4))^5 = (8/3)^4. Moreover we have a(10) = 676837*a(3).
		

References

  • Roman Witula, E. Hetmaniok, and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the 15th International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012, in review.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,24,1}, {1,1,19}, 30]
  • PARI
    Vec((1-2*x-8*x^2)/(1-3*x-24*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Oct 01 2012

Formula

G.f.: (1-2*x-8*x^2)/(1-3*x-24*x^2-x^3).

A217053 a(n) = 3*a(n-1) + 24*a(n-2) + a(n-3), with a(0) = 2, a(1) = 5, and a(2) = 62.

Original entry on oeis.org

2, 5, 62, 308, 2417, 14705, 102431, 662630, 4460939, 29388368, 195890270, 1297452581, 8623112591, 57204089987, 379864424726, 2521114546457, 16737293922782, 111098495308040, 737511654617345, 4895636145167777, 32498286641627651, 215727639063526946
Offset: 0

Views

Author

Roman Witula, Sep 25 2012

Keywords

Comments

The Ramanujan type sequence number 9 for the argument 2*Pi/9 defined by the following relation a(n)*3^(-n + 1/3) = ((-1)^n)*(c(1) - 1/3)^(n + 2/3) + ((-1)^n)*(c(2) - 1/3)^(n + 2/3) + (1/3 - c(4))^(n + 2/3), where c(j) := 2*cos(2*Pi*j/9). We note that c(4) = -cos(Pi/9). The conjugate with a(n) are the sequences A217052 and A217069.
In Witula's et al.'s paper the following sequence is discussed: S(n) := sum{j=0,1,2} (1/3 - c(2^j))^(n/3). It is proved that S(n+3) = (3^(1/3))*S(n+1) + S(n)/3, n=0,1,... Moreover the following decomposition holds true S(n) = x(n) + y(n)*3^(1/3) + z(n)*9^(1/3), which implies the system of recurrence relations: x(n+3) = 3*z(n+1) + x(n)/3, y(n+3) = x(n+1) + y(n)/3, z(n+3) = y(n+1) + z(n)/3, x(0)=3, y(0)=z(0)=x(1)=y(1)=z(1)=x(2)=z(2)=0, y(2)=2. Then it can be generated the relations X'(n+9) - 3*X'(n+6) - 24*X'(n+3) - X'(n) = 0, where X'(n) = X(n)*3^n for every X=x,y,z and n=0,1,..., from which we obtain that x(3*n+1)=x(3*n+2)=y(3*n)=y(3*n+1)=z(3*n)=z(3*n+2)=0 and a(n) = y(3*n+2)*3^n, A217052(n) = x(3*n)*3^(n-1), and A217069(n) = z(3*n+1)*3^(n-1).
Each a(n)+1 is divisible by 3 but which a(n)+1 are divisible by 9 - it is a question?

Examples

			We have 2*3^(1/3) = (c(1) - 1/3)^(2/3) + (c(2) - 1/3)^(2/3) + (1/3 - c(4))^(2/3), and 5*3^(-2/3) = -(c(1) - 1/3)^(5/3) - (c(2) - 1/3)^(5/3) + (1/3 - c(4))^(5/3).
Moreover we have 12*a(1) + a(0) = a(2), 5*a(2) = a(3) + a(0).
		

References

  • Roman Witula, E. Hetmaniok, and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the 15th International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012, in review.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,24,1}, {2,5,62}, 30]
  • PARI
    Vec((2-x-x^2)/(1-3*x-24*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Oct 01 2012

Formula

G.f.: (2-x-x^2)/(1-3*x-24*x^2-x^3).

A217069 a(n) = 3*a(n-1) + 24*a(n-2) + a(n-3), with a(0)=0, a(1)=2, and a(2)=7.

Original entry on oeis.org

0, 2, 7, 69, 377, 2794, 17499, 119930, 782560, 5243499, 34631867, 230522137, 1527974718, 10151087309, 67355177296, 447219602022, 2968334148479, 19705628071261, 130804123379301, 868315777996646, 5763951923164423, 38262238564792074, 253989877628319020
Offset: 0

Views

Author

Roman Witula, Sep 26 2012

Keywords

Comments

The Ramanujan sequence number 11 for the argument 2*Pi/9 defined by the relation a(n)*9^(1/3) = (3^(n-1))*(((-1)^(n-1))*(c(1) - 1/3)^(n + 1/3) + ((-1)^(n-1))*(c(2) - 1/3)^(n + 1/3) + (1/3 - c(4))^(n + 1/3)), where c(j) := 2*cos(2*Pi*j/9). The sequences A217052 and A217053 are conjugate with the sequence a(n). For more information on these connections - see Comments in A217053.
The 3-valuation of the sequence a(n) is equal to (0,2,1).

Examples

			We have a(4)-5*a(3)=32, 8*a(4)-a(5)=222, a(9)-a(6)=5226000. Furthermore from a(0)=0 we get (c(1) - 1/3)^( 1/3) + (c(2) - 1/3)^(1/3) = (1/3 - c(4))^(1/3), while from a(3)=69 we obtain 23*9^(-1/6) = (c(1) - 1/3)^(10/3) + (c(2) - 1/3)^(10/3) + (1/3 - c(4))^(10/3).
		

References

  • Roman Witula, E. Hetmaniok, and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the 15th International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012, in review.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,24,1}, {0,2,7}, 30]
  • PARI
    Vec((2+x)/(1-3*x-24*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012

Formula

G.f.: x*(2+x)/(1-3*x-24*x^2-x^3).

A215139 a(n) = (a(n-1) - a(n-3))*7^((1+(-1)^n)/2) with a(6)=5, a(7)=4, a(8)=22.

Original entry on oeis.org

5, 4, 22, 17, 91, 69, 364, 273, 1428, 1064, 5537, 4109, 21315, 15778, 81683, 60368, 312130, 230447, 1190553, 878423, 4535832, 3345279, 17267992, 12732160, 65708167, 48440175, 249956105, 184247938, 950654341, 700698236, 3615152086, 2664497745, 13746596563, 10131444477
Offset: 6

Views

Author

Roman Witula, Aug 04 2012

Keywords

Comments

The Ramanujan-type sequence the number 9 for the argument 2*Pi/7. The sequence is connecting with the following decomposition: (s(4)/s(1))^(1/3)*s(1)^n + (s(1)/s(2))^(1/3)*s(2)^n + (s(2)/s(4))^(1/3)*s(4)^n = x(n)*(4-3*7^(1/3))^(1/3) + y(n)*(11-3*49^(1/3))^(1/3), where s(j) := sin(2*Pi*j/7), x(0)=1, x(1)=-7^(1/6)/2, x(2)=y(0)=y(1)=0, y(2)=7^(1/3)/4 and X(n)=sqrt(7)*(X(n-1)-X(n-3)) for every n=3,4,..., and X=x or X=y. It could be deduced the formula 4*y(n) = a(n)*7^(1/3 + (3+(-1)^n)/4), which implies a(0)=0, a(1)= 0, a(2)= 1/7, a(3)=1/7, a(4)=1, a(5)=6/7, i.e., A163260(n)=7*a(n) for every n=0,1,...,5. The sequence a(n) is discussed in third Witula paper.

Examples

			From values of x(2),y(2) and the identity 2*sin(t)^2=1-cos(2*t) we obtain (s(4)/s(1))^(1/3)*c(1) + (s(1)/s(2))^(1/3)*c(4) + (s(2)/s(4))^(1/3)*c(1) = (4-3*7^(1/3))^(1/3) - (1/2)*(7*(11-3*49^(1/3)))^(1/3), where c(j):=cos(2*Pi*j/7). Further, from values of x(1),x(3),y(1),y(3) and the identity 4*sin(t)^3=3*sin(t)-sin(3*t) we obtain (s(4)/s(1))^(1/3)*s(4) + (s(1)/s(2))^(1/3)*s(1) + (s(2)/s(4))^(1/3)*s(2) = (-3*7^(1/6)/2 +4*7^(1/2))*(4-3*7^(1/3))^(1/3) - 7^(5/6)*(11-3*49^(1/3))^(1/3).
		

References

  • R. Witula, E. Hetmaniok and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.

Crossrefs

Programs

  • Magma
    I:=[5,4,22,17,91,69]; [n le 6 select I[n] else 7*Self(n-2) - 14*Self(n-4) + 7*Self(n-6): n in [1..30]]; // G. C. Greubel, Apr 19 2018
  • Mathematica
    LinearRecurrence[{0,7,0,-14,0,7}, {5,4,22,17,91,69}, {1,50}] (* G. C. Greubel, Apr 19 2018 *)
  • PARI
    Vec(-x*(1+x)*(6*x^4+x^3-12*x^2-x+5)/(-1+7*x^2-14*x^4+7*x^6) + O(x^50)) \\ Michel Marcus, Apr 20 2016
    

Formula

G.f.: -x*(1+x)*(6*x^4+x^3-12*x^2-x+5) / ( -1+7*x^2-14*x^4+7*x^6 ). - R. J. Mathar, Sep 14 2012

Extensions

More terms from Michel Marcus, Apr 20 2016

A218332 The sequence of coefficients of cubic polynomials p(x-n), where p(x) = x^3 - 3*x + 1.

Original entry on oeis.org

1, 0, -3, 1, 1, -3, 0, 3, 1, -6, 9, -1, 1, -9, 24, -17, 1, -12, 45, -51, 1, -15, 72, -109, 1, -18, 105, -197, 1, -21, 144, -321, 1, -24, 189, -487, 1, -27, 240, -701, 1, -30, 297, -969, 1, -33, 360, -1297, 1, -36, 429, -1691, 1, -39, 504, -2157, 1, -42, 585, -2701
Offset: 0

Views

Author

Roman Witula, Nov 02 2012

Keywords

Comments

We note that p(x) = (x - s(1))*(x + c(1))*(x - c(2)),
p(x-1) = x^3 - 3*x^2 + 3 = (x - s(2)*c(1/2))*(x - s(4)*c(1/2))*(x + s(2)*s(4)), p(x-2) = x^3 - 6*x^2 + 9*x - 1 = (x - c(1)^2)*(x - c(2)^2)*(x - c(4)^2), and p(x - n - 2) = (x - n - c(1)^2)*(x - n -c(2)^2)*(x - n - c(4)^2), n = 1,2,..., where c(j) := 2*cos(Pi*j/9) and s(j) = 2*sin(Pi*j/18). These one's are characteristic polynomials many sequences A... - see crossrefs.
A218489 is the sequence of coefficients of polynomials p(x+n).

Crossrefs

Formula

We have a(4*k) = 1, a(4*k+1) = -3*k, a(4*k+2) = 3*k^2 - 3, a(4*k+3) = -k^3 + 3*k + 1. Moreover we obtain the relations b(k+1) = b(k) - 3, c(k+1) = c(k) - 2*b(k) + 3, b(k) - c(k) + d(k) - 1, whenever p(x-k) = x^3 + b(k)*x^2 + c(k)*x + d(k).
Empirical g.f.: (x^15-3*x^13-x^12-7*x^11-9*x^10+6*x^9+3*x^8-x^7+12*x^6-3*x^5-3*x^4+x^3-3*x^2+1) / ((x-1)^4*(x+1)^4*(x^2+1)^4). - Colin Barker, May 17 2013

A218489 The sequence of coefficients of cubic polynomials p(x+n), where p(x) = x^3 - 3*x + 1.

Original entry on oeis.org

1, 0, -3, 1, 1, 3, 0, -1, 1, 6, 9, 3, 1, 9, 24, 19, 1, 12, 45, 53, 1, 15, 72, 111, 1, 18, 105, 199, 1, 21, 144, 323, 1, 24, 189, 489, 1, 27, 240, 703, 1, 30, 297, 971, 1, 33, 360, 1299, 1, 36, 429, 1693, 1, 39, 504, 2159, 1, 42, 585, 2703, 1, 45, 672, 3331
Offset: 0

Views

Author

Roman Witula, Oct 30 2012

Keywords

Comments

We note that p(x) = (x - s(1))*(x + c(1))*(x - c(2)),
p(x+1) = x^3 + 3*x^2 -1 = (x + s(1)*c(1))*(x - s(1)*c(2))*(x + c(1)*c(2)), p(x+2) = x^3 + 6*x^2 + 9*x + 3 = (x + c(1/2)^2)*(x + s(2)^2)*(x + s(4)^2), and p(x + n) = (x + n - 2 + c(1/2)^2)*(x + n - 2 + s(2)^2)*(x + n - 2 + s(4)^2), n = 2,3,..., where c(j) := 2*cos(Pi*j/9) and s(j) := 2*sin(Pi*j/18). These one's are characteristic polynomials many sequences A... - see crossrefs.
A218332 is the sequence of coefficients of polynomials p(x-n).

Crossrefs

Formula

We have a(4*k) = 1, a(4*k + 1) = 3*k, a(4*k + 2) = 3*k^2 - 3, and a(4*k + 3) = k^3 - 3*k + 1. Moreover we obtain
b(k+1) = b(k) + 3, c(k+1) = 2*b(k) + c(k) + 3, d(k+1) = b(k) + c(k) + d(k) + 1, where p(x + k) = x^3 + b(k)*x^2 + c(k)*x + d(k).
Empirical g.f.: -(3*x^15-3*x^13+x^12-13*x^11+9*x^10+6*x^9-3*x^8+5*x^7-12*x^6-3*x^5+3*x^4-x^3+3*x^2-1) / ((x-1)^4*(x+1)^4*(x^2+1)^4). - Colin Barker, May 17 2013
Previous Showing 11-18 of 18 results.