A238360
Number of genus-10 rooted maps with n edges.
Original entry on oeis.org
15230046989184655753125, 5199629454143883380553750, 909887917857275652461097750, 108861830345440643086946970900, 10021124647635764856828690342402, 757187906770815991999545249667404, 48918614114003431712044170834572688, 2779227352989564224315657269511192976, 141720718575991991799057452443438430580
Offset: 20
Rooted maps with n edges of genus g for 0 <= g <= 10:
A000168,
A006300,
A006301,
A104742,
A215402,
A238355,
A238356,
A238357,
A238358,
A238359, this sequence.
-
T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
a[n_] := T[n, 10];
Table[a[n], {n, 20, 30}] (* Jean-François Alcover, Jul 20 2018 *)
-
\\ see A238396
A269924
Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 4.
Original entry on oeis.org
225225, 12317877, 12317877, 351683046, 792534015, 351683046, 7034538511, 26225260226, 26225260226, 7034538511, 111159740692, 600398249550, 993494827480, 600398249550, 111159740692, 1480593013900, 10743797911132, 25766235457300, 25766235457300, 10743797911132, 1480593013900, 17302190625720, 160576594766588, 517592962672296, 750260619502310, 517592962672296, 160576594766588, 17302190625720
Offset: 8
Triangle starts:
n\f [1] [2] [3] [4]
[8] 225225;
[9] 12317877, 12317877;
[10] 351683046, 792534015, 351683046;
[11] 7034538511, 26225260226, 26225260226, 7034538511;
[12] ...
Cf.
A035309,
A269921,
A269922,
A269923,
A269925,
A270406,
A270407,
A270408,
A270409,
A270410,
A270412.
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
Table[Q[n, f, 4], {n, 8, 14}, {f, 1, n-7}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
-
N = 14; G = 4; gmax(n) = min(n\2, G);
Q = matrix(N + 1, N + 1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, length(Q)-1, for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric('x);
concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))
A215019
Number of unrooted maps with n edges of (orientable) genus 4.
Original entry on oeis.org
14118, 1369446, 74803564, 3023693380, 100692692173, 2922359760376, 76471600288836, 1845089145736960, 41694584320696782, 892580319444417876, 18258463136626650660, 359279139700128276168, 6836732826365623258492, 126347598971804884131800, 2275643837092089686415858
Offset: 8
- Andrew Howroyd, Table of n, a(n) for n = 8..45
- Alexander Mednykh, Alain Giorgetti, Enumeration of genus four maps by number of edges. Ars Mathematica Contemporanea 4 (2011), 351-361. MR2842107
- A. D. Mednykh and R. Nedela, Enumeration of unrooted maps with given genus, preprint (submitted to J. Combin. Th. B).
- Timothy R. S. Walsh, Alain Giorgetti, Alexander Mednykh, Enumeration of unrooted orientable maps of arbitrary genus by number of edges and vertices. Discrete Math. 312 (2012), no. 17, 2660--2671. MR2935417
A238396
Triangle T(n,k) read by rows: T(n,k) is the number of rooted genus-k maps with n edges, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 2, 0, 9, 1, 0, 54, 20, 0, 0, 378, 307, 21, 0, 0, 2916, 4280, 966, 0, 0, 0, 24057, 56914, 27954, 1485, 0, 0, 0, 208494, 736568, 650076, 113256, 0, 0, 0, 0, 1876446, 9370183, 13271982, 5008230, 225225, 0, 0, 0, 0, 17399772, 117822512, 248371380, 167808024, 24635754, 0, 0, 0, 0, 0, 165297834, 1469283166, 4366441128, 4721384790, 1495900107, 59520825, 0
Offset: 0
Triangle starts:
00: 1,
01: 2, 0,
02: 9, 1, 0,
03: 54, 20, 0, 0,
04: 378, 307, 21, 0, 0,
05: 2916, 4280, 966, 0, 0, 0,
06: 24057, 56914, 27954, 1485, 0, 0, 0,
07: 208494, 736568, 650076, 113256, 0, 0, 0, 0,
08: 1876446, 9370183, 13271982, 5008230, 225225, 0, 0, 0, 0,
09: 17399772, 117822512, 248371380, 167808024, 24635754, 0, ...,
10: 165297834, 1469283166, 4366441128, 4721384790, 1495900107, 59520825, 0, ...,
11: 1602117468, 18210135416, 73231116024, 117593590752, 66519597474, 8608033980, 0, ...,
12: 15792300756, 224636864830, 1183803697278, 2675326679856, 2416610807964, 672868675017, 24325703325, 0, ...,
...
- David M. Jackson and Terry I. Visentin, An Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces, Chapman & Hall/CRC, circa 2000. See page 227.
Columns k for 0<=k<=10 are:
A000168,
A006300,
A006301,
A104742,
A215402,
A238355,
A238356,
A238357,
A238358,
A238359,
A238360.
See
A267180 for nonorientable analog.
The triangle without the zeros is
A269919.
-
T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4n - 2)/3 T[n-1, g] + (2n-3)(2n-2)(2n-1)/12 T[n-2, g-1] + 1/2 Sum[(2k-1)(2(n - k)-1) T[k-1, i] T[n-k-1, g-i] , {k, 1, n-1}, {i, 0, g}])/((n+1)/6);
Table[T[n, g], {n, 0, 10}, {g, 0, n}] // Flatten (* Jean-François Alcover, Jul 19 2018, after Gheorghe Coserea *)
-
N=20;
MEM=matrix(N+1,N+1, r,c, -1); \\ for memoization
Q(n,g)=
{
if (n<0, return( (g<=0) ) ); \\ not given in paper
if (g<0, return( 0 ) ); \\ not given in paper
if (n<=0, return( g==0 ) ); \\ as in paper
my( m = MEM[n+1,g+1] );
if ( m != -1, return(m) ); \\ memoized value
my( t=0 );
t += (4*n-2)/3 * Q(n-1, g);
t += (2*n-3)*(2*n-2)*(2*n-1)/12 * Q(n-2, g-1);
my(l, j);
t += 1/2*
sum(k=1, n-1, l=n-k; \\ l+k == n, both >= 1
sum(i=0, g, j=g-i; \\ i+j == g, both >= 0
(2*k-1)*(2*l-1) * Q(k-1, i) * Q(l-1, j)
);
);
t *= 6/(n+1);
MEM[n+1, g+1] = t; \\ memoize
return(t);
}
for (n=0, N, for (g=0, n, print1(Q(n, g),", "); ); print(); ); /* print triangle */
A297880
Number of unsensed genus 4 maps with n edges.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 7258, 688976, 37466297, 1512650776, 50355225387, 1461269893538, 38236656513725, 922552326544030, 20847359639841664, 446290728182323620, 9129236228868478458, 179639607187998993180, 3418366706444416598777
Offset: 0
Comments