cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A217194 Number of unlabeled simple graphs with n nodes of 2 colors whose components are path graphs.

Original entry on oeis.org

1, 2, 6, 16, 42, 106, 267, 656, 1602, 3868, 9270, 22048, 52140, 122580, 286798, 667944, 1549259, 3579738, 8242638, 18917600, 43286909, 98768820, 224768425, 510235760, 1155553468, 2611251662, 5888421059, 13252176464, 29768501556, 66749440076, 149415504274
Offset: 0

Views

Author

Geoffrey Critzer, Sep 27 2012

Keywords

Comments

Here, a path graph is a connected graph with no cycles such that each node has degree at most two.

Examples

			a(3) = 16 because we have:
w w w; w w b; w b b; b b b;
w w-w; w w-b; w b-b; b w-w; b w-b; b b-b;
w-w-w; w-w-b; w-b-w; b-w-b; b-b-w; b-b-b, where the 2 colors are black b and white w.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*(2^(d-1)+
          2^(floor((d+1)/2)-1)), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 27 2012
  • Mathematica
    nn=30;p=Product[1/(1- x^i)^(2^(i-1)+2^(Floor[(i+1)/2]-1)),{i,1,nn}];CoefficientList[Series[p,{x,0,nn}],x]

Formula

G.f.: Product_{i>=1} 1/(1-x^i)^(2^(i-1)+2^(floor((i+1)/2)-1)).
EULER transform of A005418.

A217201 Number of simple unlabeled graphs with n nodes of 2 colors whose components are cycles.

Original entry on oeis.org

1, 0, 0, 4, 6, 8, 23, 42, 83, 166, 324, 622, 1236, 2366, 4595, 8900, 17225, 33212, 64376, 124360, 240819, 466284, 904149, 1753782, 3407225, 6623274, 12892131, 25116456, 48987833, 95633480, 186891367, 365549578, 715661254, 1402246154, 2749778317, 5396266284
Offset: 0

Views

Author

Geoffrey Critzer, Sep 27 2012

Keywords

Crossrefs

Programs

  • Maple
    with (numtheory):
    b:= n-> `if`(n<3, 0, add(phi(d)*2^(n/d)/(2*n), d=divisors(n))+
        `if`(irem(n, 2)=1, 2^((n-1)/2), 2^(n/2-1)+2^(n/2-2))):
    a:= proc(n) option remember; local d, j; `if`(n=0, 1,
          add(add(d*b(d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 27 2012
  • Mathematica
    Needs["Combinatorica`"]
    a=Expand[Table[nn=n;CycleIndex[DihedralGroup[nn],s]/.Table[s[i]->2,{i,1,nn}],{n,1,30}]];
    nn=30;p=Product[1/(1- x^i)^a[[i]],{i,3,nn}];CoefficientList[Series[p,{x,0,nn}],x]
    (* Second program: *)
    b[n_] := If[n < 3, 0, Sum[EulerPhi[d]*2^(n/d)/(2*n), {d, Divisors[n]}] +  If[Mod[n, 2] == 1, 2^((n - 1)/2), 2^(n/2 - 1) + 2^(n/2 - 2)]];
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n - j], {j, 1, n}]/n];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 05 2017, after Alois P. Heinz *)

Formula

EULER transform of 0,0,4,6,8,13,30,... A000029.

A382340 Triangle read by rows: T(n,k) is the number of partitions of a 3-colored set of n objects into exactly k parts with 0 <= k <= n.

Original entry on oeis.org

1, 0, 3, 0, 6, 6, 0, 10, 18, 10, 0, 15, 51, 36, 15, 0, 21, 105, 123, 60, 21, 0, 28, 208, 326, 226, 90, 28, 0, 36, 360, 771, 678, 360, 126, 36, 0, 45, 606, 1641, 1836, 1161, 525, 168, 45, 0, 55, 946, 3271, 4431, 3403, 1775, 721, 216, 55, 0, 66, 1446, 6096, 10026, 8982, 5472, 2520, 948, 270, 66
Offset: 0

Views

Author

Peter Dolland, Mar 22 2025

Keywords

Examples

			Triangle starts:
 0 : [1]
 1 : [0,  3]
 2 : [0,  6,    6]
 3 : [0, 10,   18,   10]
 4 : [0, 15,   51,   36,    15]
 5 : [0, 21,  105,  123,    60,   21]
 6 : [0, 28,  208,  326,   226,   90,   28]
 7 : [0, 36,  360,  771,   678,  360,  126,   36]
 8 : [0, 45,  606, 1641,  1836, 1161,  525,  168,  45]
 9 : [0, 55,  946, 3271,  4431, 3403, 1775,  721, 216,  55]
10 : [0, 66, 1446, 6096, 10026, 8982, 5472, 2520, 948, 270, 66]
...
		

Crossrefs

Row sums are A217093.
The 1-color case is A008284.
The 2-color case is A382339.
Cf. A382045.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(
          b(n-i*j, min(n-i*j, i-1))*binomial(i*(i+3)/2+j, j)*x^j, j=0..n/i))))
        end:
    T:= (n, k)-> coeff(b(n$2), x, k):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Mar 22 2025
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1]]*Binomial[i*(i + 3)/2 + j, j]*x^j, {j, 0, n/i}]]]];
    T[n_, k_] := Coefficient[b[n, n], x, k];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 17 2025, after Alois P. Heinz *)
  • Python
    from sympy import binomial
    from sympy.utilities.iterables import partitions
    colors = 3 - 1   # the number of colors - 1
    def t_row( n):
        if n == 0 : return [1]
        t = list( [0] * n)
        for p in partitions( n):
            fact = 1
            s = 0
            for k in p :
                s += p[k]
                fact *= binomial( binomial( k + colors, colors) + p[k] - 1, p[k])
            if s > 0 :
                t[s - 1] += fact
        return [0] + t

Formula

T(n,1) = binomial(n + 2, 2) = A000217(n + 1) for n >= 1.
T(n,n) = binomial(n + 2, 2) = A000217(n + 1).
T(n,k) = A382045(n,k) - A382045(n,k-1) for k >= 1.
Previous Showing 11-13 of 13 results.