A110148
Number of perfect squared rectangles of order n up to symmetries of the rectangle and of its subrectangles if any.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 2, 10, 38, 127, 408, 1375, 4783, 16645, 58059, 203808, 722575
Offset: 1
Tanya Khovanova, Feb 18 2007
- C. J. Bouwkamp, On the dissection of rectangles into squares (Papers I-III), Koninklijke Nederlandsche Akademie van Wetenschappen, Proc., Ser. A, Paper I, 49 (1946), 1176-1188 (=Indagationes Math., v. 8 (1946), 724-736); Paper II, 50 (1947), 58-71 (=Indagationes Math., v. 9 (1947), 43-56); Paper III, 50 (1947), 72-78 (=Indagationes Math., v. 9 (1947), 57-63). [Paper I has terms up to a(12) and an incorrect value for a(13) on p. 1178.]
- C. J. Bouwkamp, On the construction of simple perfect squared squares, Koninklijke Nederlandsche Akademie van Wetenschappen, Proc., Ser. A, 50 (1947), 1296-1299 (=Indagationes Math., v. 9 (1947), 622-625). [Correct terms up to a(13) on p. 1299.]
- I. M. Yaglom, How to dissect a square? (in Russian), Nauka, Moscow, 1968. In djvu format (1.7M), also as this pdf (9.5M). [Terms up to a(13) on pp. 26-7.]
- Index entries for squared rectangles
- Index entries for squared squares
Cf.
A217154 (counts symmetries of any subrectangles as distinct).
A160911
a(n) is the number of arrangements of n square tiles with coprime sides in a rectangular frame, counting reflected, rotated or rearranged tilings only once.
Original entry on oeis.org
1, 1, 2, 5, 11, 29, 84, 267, 921, 3481, 14322, 62306, 285845, 1362662, 6681508, 33483830
Offset: 1
From _Rainer Rosenthal_, Dec 24 2022, updated May 09 2024: (Start)
.
|A|
|A B| |B|
|C D| (2 X 2: 1,1,1,1) |C| (4 X 1: 1,1,1,1)
|D|
.
|A A|
|A A A| |A A|
|A A A| |B B|
|A A A| (4 X 3: 3,1,1,1) |B B| (5 X 2: 2,2,1,1)
|B C D| |C D|
.
|A A A|
|A A A| <================= 3 X 3 minor A
|A A A| 2 X 2 minor B
|B B C| (5 X 3: 3,2,1,1) 1 X 1 minor C
|B B D| 1 X 1 minor D
________________________________________________________
a(4) = 5 illustrated as (p X q: t_1,t_2,t_3,t_4)
and as p X q matrices with t_i X t_i minors
.
Example configurations for a(6) = 29:
.
|A A A A|
|A A A A|
|A A A A|
|A A B| |A B| |A A A A|
|A A C| |C D| |B B C D|
|D E F| |E F| |B B E F|
______________________________________________
(3 X 3: (3 X 2: (6 X 4:
2,1,1,1,1,1) 1,1,1,1,1,1) 4,2,1,1,1,1)
. _________________________
|A A A A A A B B B B B B B| | | |
|A A A A A A B B B B B B B| | | |
|A A A A A A B B B B B B B| | 6 | |
|A A A A A A B B B B B B B| | | 7 |
|A A A A A A B B B B B B B| | | |
|A A A A A A B B B B B B B| |___________| |
|C C C C C D B B B B B B B| | |1|_____________|
|C C C C C E E E E F F F F| | | | |
|C C C C C E E E E F F F F| | 5 | 4 | 4 |
|C C C C C E E E E F F F F| | | | |
|C C C C C E E E E F F F F| |_________|_______|_______|
_____________________________ _____________________________
(13 X 11: 7,6,5,4,4,1) (13 X 11: 7,6,5,4,4,1)
[rotated by 90 degrees] [alternate visualization]
.(End)
Cf.
A002839,
A005670,
A113881,
A210517,
A217156,
A219924,
A221843,
A221844,
A221845,
A340726,
A342558,
A350237.
A217148
Smallest possible side length for a perfect squared square of order n; or 0 if no such square exists.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 112, 110, 110, 120, 147, 212, 180, 201, 221, 201, 215, 185, 233, 218, 225, 253, 237
Offset: 1
- S. E. Anderson, Perfect Squared Rectangles and Squared Squares.
- Stuart E. Anderson, 'Special' Perfect Squared Squares", accessed 2014. - _N. J. A. Sloane_, Mar 30 2014
- I. Gambini, Quant aux carrés carrelés, Thesis, Université de la Méditerranée Aix-Marseille II, 1999, pp. 73-78.
- Ed Pegg Jr., Advances in Squared Squares, Wolfram Community Bulletin, Jul 23 2020
- Eric Weisstein's World of Mathematics, Perfect Square Dissection
A219766
Number of nonsquare simple perfect squared rectangles of order n up to symmetry.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 2, 6, 22, 67, 213, 744, 2609, 9016, 31426, 110381, 390223, 1383905, 4931307, 17633765, 63301415, 228130900, 825228950, 2994833413
Offset: 1
-
A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]];
A002839 = A@002839;
A006983 = A@006983;
a[n_] := A002839[[n]] - A006983[[n]];
a /@ Range[24] (* Jean-François Alcover, Jan 13 2020 *)
A220164
Number of simple squared squares of order n up to symmetry.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 5, 15, 19, 57, 72, 275, 499, 1778, 3705, 11318, 24525, 65906, 135599, 333938, 687969, 1681759, 3652677
Offset: 1
Clarified some definitions in comments and added a(30) -
Stuart E Anderson, Jun 03 2013
A220166
Number of nonsquare simple squared rectangles of order n up to symmetry.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 3, 6, 22, 76, 246, 848, 2889, 9964, 34440, 119875, 420525, 1482802, 5254679, 18713933, 66968081, 240735712
Offset: 1
A220167
Number of simple squared rectangles of order n up to symmetry.
Original entry on oeis.org
3, 6, 22, 76, 247, 848, 2892, 9969, 34455, 119894, 420582, 1482874, 5254954, 18714432, 66969859, 240739417
Offset: 1
Comments