A222529
O.g.f.: Sum_{n>=0} (n^9)^n * exp(-n^9*x) * x^n / n!.
Original entry on oeis.org
1, 1, 131071, 1270865805301, 196740254364198919901, 236795997997922560392792426501, 1454443713270449746545892977574122129433, 34559048315358253352594346952765431711799794270765, 2610516895723221966171633379256064857587637240616032299710417
Offset: 0
O.g.f.: A(x) = 1 + x + 131071*x^2 + 1270865805301*x^3 + 196740254364198919901*x^4 +...+ Stirling2(9*n, n)*x^n +...
where
A(x) = 1 + 1^9*x*exp(-1^9*x) + 2^18*exp(-2^9*x)*x^2/2! + 3^27*exp(-3^9*x)*x^3/3! + 4^36*exp(-4^9*x)*x^4/4! + 5^45*exp(-5^9*x)*x^5/5! +...
is a power series in x with integer coefficients.
-
Table[StirlingS2[9*n, n],{n,0,20}] (* Vaclav Kotesovec, May 11 2014 *)
-
{a(n)=polcoeff(sum(k=0, n, (k^9)^k*exp(-k^9*x +x*O(x^n))*x^k/k!), n)}
-
{a(n)=1/n!*polcoeff(sum(k=0, n, (k^9)^k*x^k/(1+k^9*x +x*O(x^n))^(k+1)), n)}
-
{a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(8*n))), 8*n)}
-
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n) = Stirling2(9*n, n)}
for(n=0, 12, print1(a(n), ", "))
A222530
O.g.f.: Sum_{n>=1} (n^10)^n * exp(-n^10*x) * x^n / n!.
Original entry on oeis.org
1, 1, 524287, 34314651811530, 50369882873307917364901, 740095864368253016271188139587625, 67872880319721869662486234870635119906757244, 28468832412072117193931250482560479429446507352468258480, 43812568949824405485262661429905291482204531455805230631187460302069
Offset: 0
O.g.f.: A(x) = 1 + x + 524287*x^2 + 34314651811530*x^3 + 50369882873307917364901*x^4 +...+ Stirling2(10*n, n)*x^n +...
where
A(x) = 1 + 1^10*x*exp(-1^10*x) + 2^20*exp(-2^10*x)*x^2/2! + 3^30*exp(-3^10*x)*x^3/3! + 4^40*exp(-4^10*x)*x^4/4! + 5^50*exp(-5^10*x)*x^5/5! +...
is a power series in x with integer coefficients.
-
Table[StirlingS2[10*n, n],{n,0,20}] (* Vaclav Kotesovec, May 11 2014 *)
-
{a(n)=polcoeff(sum(k=0, n, (k^10)^k*exp(-k^10*x +x*O(x^n))*x^k/k!), n)}
-
{a(n)=1/n!*polcoeff(sum(k=0, n, (k^1)^k*x^k/(1+k^10*x +x*O(x^n))^(k+1)), n)}
-
{a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(9*n))), 9*n)}
-
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n) = Stirling2(10*n, n)}
for(n=0, 12, print1(a(n), ", "))
A218142
a(n) = Stirling2(n^2+n, n).
Original entry on oeis.org
1, 1, 31, 86526, 45232115901, 7713000216608565075, 666480349285726891499539272955, 41929298560838945526242744414099901692285884, 2610516895723221966171633379256064857587637240616032299710417
Offset: 0
O.g.f.: A(x) = 1 + x + 31*x^2 + 86526*x^3 + 45232115901*x^4 +...
-
Table[StirlingS2[n^2+n, n],{n,0,10}] (* Vaclav Kotesovec, May 11 2014 *)
-
makelist(stirling2(n^2+n,n),n,0,30 ); /* Martin Ettl, Oct 21 2012 */
-
{a(n)=polcoeff(sum(k=0,n,(k^(n+1))^k*exp(-k^(n+1)*x +x*O(x^n))*x^k/k!),n)}
-
{a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(n^2))), n^2)}
-
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n) = Stirling2(n^2+n, n)}
for(n=0, 10, print1(a(n), ", "))
A218143
a(n) = Stirling2(n*(n+1)/2, n).
Original entry on oeis.org
1, 1, 3, 90, 34105, 210766920, 26585679462804, 82892803728383735268, 7529580759157036060608585183, 22982258052528294182955639980819773510, 2672446997421818663856559987803834697952486978300, 13239043631590111512460321918828937597837325561187113535696980
Offset: 0
O.g.f.: A(x) = 1 + x + 3*x^2 + 90*x^3 + 34105*x^4 + 210766920*x^5 + 26585679462804*x^6 +...
-
Table[StirlingS2[n*(n+1)/2, n],{n,0,10}] (* Vaclav Kotesovec, May 11 2014 *)
-
makelist(stirling2(n*(n+1)/2,n),n,0,30 ); /* Martin Ettl, Oct 21 2012 */
-
{a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(n*(n-1)/2))), n*(n-1)/2)}
-
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n) = Stirling2(n*(n+1)/2, n)}
for(n=0, 15, print1(a(n), ", "))
A274713
Number of partitions of a {3*n-1}-set into n nonempty subsets.
Original entry on oeis.org
1, 15, 966, 145750, 40075035, 17505749898, 11143554045652, 9741955019900400, 11201516780955125625, 16392038075086211019625, 29749840488672593296243236, 65580126734167548918100615020, 172597131674172062132363512309613, 534584200037719212882636004559739000, 1924887533450780657560944228447179522880, 7973126100358260458973226689851075932667520, 37645241791600906804871080818625037726247519045
Offset: 1
O.g.f.: A(x) = x + 15*x^2 + 966*x^3 + 145750*x^4 + 40075035*x^5 + 17505749898*x^6 + 11143554045652*x^7 + 9741955019900400*x^8 +...
where
A(x) = exp(-x)*x + 2^5*exp(-2^3*x)*x^2/2! + 3^8*exp(-3^3*x)*x^3/3! + 4^11*exp(-4^3*x)*x^4/4! + 5^14*exp(-5^3*x)*x^5/5! + 6^17*exp(-6^3*x)*x^6/6! + 7^20*exp(-7^3*x)*x^7/7! + 8^23*exp(-8^3*x)*x^8/8! +...+ n^(3*n-1)*exp(-n^3*x)*x^n/n! +...
simplifies to an integer series.
-
Table[StirlingS2[3*n - 1, n], {n, 1, 20}] (* Vaclav Kotesovec, Jul 06 2016 *)
-
{a(n) = abs( stirling(3*n-1, n, 2) )}
for(n=1, 20, print1(a(n), ", "))
-
{a(n) = 1/n! * sum(k=0, n, (-1)^(n-k) * binomial(n, k) * k^(3*n-1))}
for(n=1, 20, print1(a(n), ", "))
-
{a(n) = polcoeff( 1/prod(k=1, n, 1-k*x +x*O(x^(2*n))), 2*n-1)}
for(n=1, 20, print1(a(n), ", "))
-
{a(n) = polcoeff( sum(m=1, n, m^(3*m-1) * x^m * exp(-m^3*x +x*O(x^n))/m!), n)}
for(n=1, 20, print1(a(n), ", "))
A383881
a(n) = [x^n] Product_{k=1..3*n} 1/(1 - k*x).
Original entry on oeis.org
1, 6, 266, 22275, 2757118, 452329200, 92484925445, 22653141490980, 6466506598695390, 2108114165258886708, 772778072287000494520, 314641228029527540596455, 140880584836935832288402135, 68799366730032076856334789900, 36392216443342587869022660451080, 20728132932716479897744043460870000
Offset: 0
-
[&+[Abs(StirlingSecond(4*n, 3*n))]: n in [0..15]]; // Vincenzo Librandi, May 21 2025
-
Table[SeriesCoefficient[Product[1/(1-k*x), {k, 1, 3*n}], {x, 0, n}], {n, 0, 15}]
Table[StirlingS2[4*n, 3*n], {n, 0, 15}]
Table[SeriesCoefficient[(-1)^n/(Pochhammer[1 - 1/x, 3*n]*x^(3*n)), {x, 0, n}], {n, 0, 15}]
A217912
O.g.f.: Sum_{n>=0} 2*n^n * (3*n+2)^(n-1) * exp(-n*(3*n+2)*x) * x^n / n!.
Original entry on oeis.org
1, 2, 22, 602, 26656, 1643054, 130318966, 12666846728, 1459524093232, 194626267782398, 29495119281572770, 5008297010070635978, 942044179147597185544, 194462342099815302424136, 43711609296992502659474632, 10628894996508864880841838416, 2780041837527932453797746700384
Offset: 0
O.g.f.: A(x) = 1 + 2*x + 22*x^2 + 602*x^3 + 26656*x^4 + 1643054*x^5 + ...
where
A(x) = 1 + 2*1^1*5^0*x*exp(-1*5*x) + 2*2^2*8^1*exp(-2*8*x)*x^2/2! + 2*3^3*11^2*exp(-3*11*x)*x^3/3! + 2*4^4*14^3*exp(-4*14*x)*x^4/4! + 2*5^5*17^4*exp(-5*17*x)*x^5/5! + ...
simplifies to a power series in x with integer coefficients.
-
Flatten[{1,Table[Sum[Binomial[n-1,j]*3^j*2^(n-j)*StirlingS2[n+j,n],{j,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, May 22 2014 *)
-
makelist( if n=0 then 1 else 1/n! * sum(2*(-1)^(n-k)*binomial(n,k) * k^n * (3*k+2)^(n-1),k,0,n), n, 0, 30); /* Martin Ettl, Oct 15 2012 */
-
{a(n)=polcoeff(sum(k=0,n,2*k^k*(3*k+2)^(k-1)*x^k*exp(-k*(3*k+2)*x+x*O(x^n))/k!),n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=1/n!*polcoeff(sum(k=0, n, 2*k^k*(3*k+2)^(k-1)*x^k/(1+k*(3*k+2)*x +x*O(x^n))^(k+1)), n)}
-
{a(n)=1/n!*sum(k=0,n, 2*(-1)^(n-k)*binomial(n,k)*k^n*(3*k+2)^(n-1))}
for(n=0,30,print1(a(n),", "))
-
{a(n)=polcoeff(1+2*x*(1+2*x)^(n-1)/prod(k=0, n, 1-3*k*x +x*O(x^n)), n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=polcoeff(1+2*x*(1-2*x)^n/prod(k=0, n, 1-(3*k+2)*x +x*O(x^n)), n)}
for(n=0,30,print1(a(n),", "))
A219228
O.g.f. satisfies: A(x) = Sum_{n>=0} A(x)^n * (n^3*x)^n/n! * exp(-n^3*x*A(x)).
Original entry on oeis.org
1, 1, 32, 3119, 625710, 214333471, 112105268136, 83149960883200, 83014425998481126, 107334569041127441462, 174471878478682785998864, 348242875992753988109552778, 837327855535084109106340786272, 2387108242583316451939303856237037
Offset: 0
O.g.f.: A(x) = 1 + x + 32*x^2 + 3119*x^3 + 625710*x^4 + 214333471*x^5 +...
where
A(x) = 1 + x*A(x)*exp(-x*A(x)) + 2^6*x^2*A(x)^2/2!*exp(-8*x*A(x)) + 3^9*x^3*A(x)^3/3!*exp(-27*x*A(x)) + 4^12*x^4*A(x)^4/4!*exp(-64*x*A(x)) + 5^15*x^5*A(x)^5/5!*exp(-125*x*A(x)) +...
simplifies to a power series in x with integer coefficients.
G.f. A(x) satisfies A(x) = G(x*A(x)) where G(x) = A(x/G(x)) begins:
G(x) = 1 + x + 31*x^2 + 3025*x^3 + 611501*x^4 + 210766920*x^5 + 110687251039*x^6 +...+ Stirling2(3*n,n)*x^n +...
-
{a(n)=local(A=1);for(i=1,n,A=sum(m=0, n, (m^3*x*A)^m/m!*exp(-m^3*x*A+x*O(x^n))));polcoeff(A, n)}
for(n=0,21,print1(a(n),", "))
A222053
O.g.f.: Sum_{n>=0} (n^3*x)^n/(1-n^3*x)^n * exp(-n^3*x/(1-n^3*x)) / n!.
Original entry on oeis.org
1, 1, 32, 3536, 877221, 394506859, 284110844070, 302350295364613, 449340338669205876, 894210483750815778132, 2306748823711254973903838, 7516588630649080782251419791, 30292392269310179039574629318038, 148358895760995636729844370111255773
Offset: 0
O.g.f.: A(x) = 1 + x + 32*x^2 + 3536*x^3 + 877221*x^4 + 394506859*x^5 +...
where
A(x) = 1 + x/(1-x)*exp(-x/(1-x)) + 2^6*x^2/(1-2^3*x)^2*exp(-2^3*x/(1-2^3*x))/2! + 3^9*x^3/(1-3^3*x)^3*exp(-3^3*x/(1-3^3*x))/3! + 4^12*x^4/(1-4^3*x)^4*exp(-4^3*x/(1-4^3*x))/4! +...
simplifies to a power series in x with integer coefficients.
-
{a(n)=polcoeff(sum(k=0, n+1, (k^3*x)^k/(1-k^3*x)^k*exp(-k^3*x/(1-k^3*x+x*O(x^n)))/k!), n)}
for(n=0, 25, print1(a(n), ", "))
-
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n)=if(n==0, 1, sum(k=1, n, binomial(n-1, k-1) * Stirling2(3*n, k)))}
for(n=0, 25, print1(a(n), ", "))
A222054
O.g.f.: Sum_{n>=0} (n^4*x)^n/(1-n^4*x)^n * exp(-n^4*x/(1-n^4*x)) / n!.
Original entry on oeis.org
1, 1, 128, 90621, 193322261, 933620289929, 8632521193856886, 136885314823146617517, 3443427946573913689696192, 129667338445150206244162849650, 6988095504452769015520539806767120, 520011535068804196524689647521015780176
Offset: 0
O.g.f.: A(x) = 1 + x + 128*x^2 + 90621*x^3 + 193322261*x^4 +...
where
A(x) = 1 + x/(1-x)*exp(-x/(1-x)) + 2^8*x^2/(1-2^4*x)^2*exp(-2^4*x/(1-2^4*x))/2! + 3^12*x^3/(1-3^4*x)^3*exp(-3^4*x/(1-3^4*x))/3! + 4^16*x^4/(1-4^4*x)^4*exp(-4^4*x/(1-4^4*x))/4! +...
simplifies to a power series in x with integer coefficients.
-
{a(n)=polcoeff(sum(k=0, n+1, (k^4*x)^k/(1-k^4*x)^k*exp(-k^4*x/(1-k^4*x+x*O(x^n)))/k!), n)}
for(n=0, 20, print1(a(n), ", "))
-
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n)=if(n==0, 1, sum(k=1, n, binomial(n-1, k-1) * Stirling2(4*n, k)))}
for(n=0, 20, print1(a(n), ", "))
Comments