cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A356269 a(n) = Sum_{k=0..n} binomial(2*k, k) * p(k), where p(k) is the partition function A000041.

Original entry on oeis.org

1, 3, 15, 75, 425, 2189, 12353, 63833, 346973, 1805573, 9565325, 49069517, 257289529, 1307750129, 6723491129, 34024174649, 172873744739, 865954792079, 4359881882579, 21679061144579, 108108834714719, 534409071271199, 2642716232918639, 12975671796056639, 63765647596939139
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 01 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*k, k] * PartitionsP[k], {k, 0, n}], {n, 0, 30}]

Formula

a(n) ~ binomial(2*n,n) * p(n) * 4/3.
a(n) ~ 2^(2*n) * exp(Pi*sqrt(2*n/3)) / (3^(3/2) * sqrt(Pi) * n^(3/2)).

A324236 Expansion of e.g.f. 1 / (1 - Sum_{k>=1} p(k)*x^k/k!), where p(k) = number of partitions of k (A000041).

Original entry on oeis.org

1, 1, 4, 21, 149, 1317, 13985, 173209, 2451844, 39044784, 690862770, 13446615722, 285510978887, 6567419023617, 162686428939423, 4317885767971448, 122241788335870103, 3677030054440996775, 117111150680951037907, 3937135961534144480556, 139328182441566999124409
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 02 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-k)*
          binomial(n, k)*combinat[numbpart](k), k=1..n))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 02 2019
  • Mathematica
    nmax = 20; CoefficientList[Series[1/(1 - Sum[PartitionsP[k] x^k/k!, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] PartitionsP[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * p(k) * a(n-k).
a(n) ~ c * d^n * n!, where d = 1.769410350604938716841596133605930996231892313627986058432895713767619380283... and c = 0.6329116440270047042622953043644713645679657251851049998748689226219... - Vaclav Kotesovec, Sep 03 2019

A294350 Product of first n terms of the binomial transform of the partition function (A000041).

Original entry on oeis.org

1, 2, 10, 130, 4420, 388960, 87516000, 49796604000, 70960160700000, 251057048556600000, 2188464292267882200000, 46682131818366195208200000, 2421822316605019841206207800000, 303875733353698259555507717497200000, 91748896295748761809334889636212098800000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 29 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Sum[Binomial[m, k]*PartitionsP[k], {k, 0, m}], {m, 0, n}], {n, 0, 15}]
  • PARI
    a(n) = prod(m=0, n, sum(k=0, m, binomial(m,k)*numbpart(k))); \\ Michel Marcus, Oct 29 2017

A307264 Expansion of (1/(1 - x)) * Product_{k>=1} 1/(1 + (-x)^k/(1 - x)^k).

Original entry on oeis.org

1, 2, 3, 5, 10, 22, 49, 107, 229, 486, 1035, 2225, 4825, 10508, 22875, 49624, 107154, 230356, 493471, 1054602, 2250850, 4801825, 10244940, 21865466, 46680201, 99659713, 212697816, 453634533, 966551216, 2057052465, 4372660927, 9284272791, 19692591418
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 01 2019

Keywords

Comments

Binomial transform of A000700.

Crossrefs

Programs

  • Maple
    a:=series((1/(1-x))*mul(1/(1+(-x)^k/(1-x)^k),k=1..100),x=0,33): seq(coeff(a,x,n),n=0..32); # Paolo P. Lava, Apr 03 2019
  • Mathematica
    nmax = 32; CoefficientList[Series[1/(1 - x) Product[1/(1 + (-x)^k/(1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: (1/(1 - x)) * Product_{k>=1} (1 + x^(2*k-1)/(1 - x)^(2*k-1)).
a(n) = Sum_{k=0..n} binomial(n,k)*A000700(k).
a(n) ~ 2^(n-1) * exp(Pi*sqrt(n/3)/2 + Pi^2/96) / (3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Apr 01 2019
Previous Showing 21-24 of 24 results.