cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A224861 Number T(n,k) of tilings of an n X k rectangle using integer-sided square tiles reduced for symmetry, where the orbits under the symmetry group of the rectangle, D2, have 2 elements; triangle T(n,k), k >= 1, 0 <= n < k, read by columns.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 1, 4, 0, 0, 3, 3, 15, 0, 0, 4, 9, 38, 75, 0, 0, 9, 9, 68, 77, 604, 0, 0, 13, 21, 160, 311, 2384, 4556
Offset: 1

Views

Author

Keywords

Examples

			The triangle is:
n\k  1   2   3   4   5   6   7    8 ...
.
0    0   0   0   0   0   0   0    0 ...
1        0   0   0   0   0   0    0 ...
2            1   1   3   4   9   13 ...
3                4   3   9   9   21 ...
4                   15  38  68  160 ...
5                       75  77  311 ...
6                          604 2384 ...
7                              4556 ...
...
T(3,5) = 3 because there are 3 different sets of 2 tilings of the 3 X 5 rectangle by integer-sided squares, where any sequence of group D2 operations will transform each tiling in a set into the other in the same set.  Group D2 operations are:
.   the identity operation
.   rotation by 180 degrees
.   reflection about a horizontal axis through the center
.   reflection about a vertical axis through the center
An example of a tiling in each set is:
._________.    ._________.    ._________.
|   |_|   |    |   |_|_|_|    |     |_|_|
|_ _|_|_ _|    |___|_|   |    |     |_|_|
|_|_|_|_|_|    |_|_|_|___|    |_____|_|_|
		

Crossrefs

Formula

A224850(n,k) + T(n,k) + A224867(n,k) = A227690(n,k).
1*A224850(n,k) + 2*T(n,k) + 4*A224867(n,k) = A219924(n,k).

A224867 Number T(n,k) of tilings of an n X k rectangle using integer-sided square tiles reduced for symmetry, where the orbits under the symmetry group of the rectangle, D2, have 4 elements; triangle T(n,k), k >= 1, 0 <= n < k, read by columns.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 5, 21, 0, 0, 0, 10, 65, 440, 0, 0, 0, 27, 222, 1901, 14508, 0, 0, 0, 58, 676, 7716, 81119, 856559
Offset: 1

Views

Author

Keywords

Examples

			The triangle is:
n\k    1      2      3      4      5      6      7      8 ...
.
0      0      0      0      0      0      0      0      0 ...
1             0      0      0      0      0      0      0 ...
2                    0      0      0      0      0      0 ...
3                           1      5     10     27     58 ...
4                                 21     65    222    676 ...
5                                       440   1901   7716 ...
6                                            14508  81119 ...
7                                                  856559 ...
...
T(3,5) = 5 because there are 5 different sets of 4 tilings of the 3 X 5 rectangle by integer-sided squares, where any sequence of group D2 operations will transform each tiling in a set into another in the same set.  Group  D2 operations are:
.   the identity operation
.   rotation by 180 degrees
.   reflection about a horizontal axis through the center
.   reflection about a vertical axis through the center
An example of a tiling in each set is:
._________.  ._________.  ._________.  ._________.  ._________.
|   |_|_|_|  |_|   |_|_|  |   |   |_|  |   |_|_|_|  |   |     |
|_ _|_|_|_|  |_|_ _|_|_|  |_ _|_ _|_|  |___|   |_|  |___|     |
|_|_|_|_|_|  |_|_|_|_|_|  |_|_|_|_|_|  |_|_|___|_|  |_|_|_____|
		

Crossrefs

Formula

A224850(n,k) + A224861(n,k) + T(n,k) = A227690(n,k).
1*A224850(n,k) + 2*A224861(n,k) + 4*T(n,k) = A219924(n,k).

A160911 a(n) is the number of arrangements of n square tiles with coprime sides in a rectangular frame, counting reflected, rotated or rearranged tilings only once.

Original entry on oeis.org

1, 1, 2, 5, 11, 29, 84, 267, 921, 3481, 14322, 62306, 285845, 1362662, 6681508, 33483830
Offset: 1

Views

Author

Kevin Johnston, Feb 11 2016

Keywords

Comments

There is only one arrangement of 1 square tile: a 1 X 1 rectangle. There is also only 1 arrangement of 2 square tiles: a 2 X 1 rectangle. There are 2 arrangements of 3 square tiles: a 3 X 1 rectangle (three 1 X 1 tiles) and a 3 X 2 rectangle (a 2 X 2 tile and two 1 X 1 tiles).
Short notation for the 2 possible 3-tile solutions:
3 X 1: 1,1,1
3 X 2: 2,1,1
More examples see below.
The smallest tile is not always a unit tile, e.g., one of the solutions for 5 tiles is: 6 X 5: 3,3,2,2,2.
My definition of a unique solution is the "signature" string in this notation: the rectangle size for nonsquares and the list of coprime tile sizes sorted largest to smallest. Rotations and reflections of a known solution are not new solutions; rearrangements of the same size tiles within the same overall boundary are not new solutions. But reorganizations of the same size tiles in different boundaries are unique solutions, such as 4 X 1: 1,1,1,1 and 2 X 2: 1,1,1,1.
From Rainer Rosenthal, Dec 23 2022: (Start)
The above description can be abbreviated as follows:
a(n) is the number of (2+n)-tuples (p X q: t_1,...,t_n) of positive integers, such that:
0. p >= q.
1. gcd(t_1,...,t_n) = 1 and t_i >= t_j for i < j and Sum_{i=1..n} t_i^2 = p * q.
2. Any p X q matrix is the disjoint union of contiguous t_i X t_i minors, i = 1..n. (For contiguous minors resp. submatrices see comments in A350237.)
.
The rectangle size p X q may have gcd(p,q) > 1, as seen in the examples for 3 X 2 and 6 X 4. Therefore a(n) >= A210517(n) for all n, and a(6) > A210517(6).
(End)

Examples

			From _Rainer Rosenthal_, Dec 24 2022, updated May 09 2024: (Start)
.
                                 |A|
     |A B|                       |B|
     |C D|  (2 X 2: 1,1,1,1)     |C|    (4 X 1: 1,1,1,1)
                                 |D|
.
                                 |A A|
    |A A A|                      |A A|
    |A A A|                      |B B|
    |A A A| (4 X 3: 3,1,1,1)     |B B|  (5 X 2: 2,2,1,1)
    |B C D|                      |C D|
.
    |A A A|
    |A A A|  <=================   3 X 3 minor A
    |A A A|                       2 X 2 minor B
    |B B C|  (5 X 3: 3,2,1,1)     1 X 1 minor C
    |B B D|                       1 X 1 minor D
  ________________________________________________________
       a(4) = 5 illustrated as (p X q: t_1,t_2,t_3,t_4)
         and as p X q matrices with t_i X t_i minors
.
Example configurations for a(6) = 29:
.
                                    |A A A A|
                                    |A A A A|
                                    |A A A A|
      |A A B|         |A B|         |A A A A|
      |A A C|         |C D|         |B B C D|
      |D E F|         |E F|         |B B E F|
   ______________________________________________
      (3 X 3:        (3 X 2:         (6 X 4:
    2,1,1,1,1,1)   1,1,1,1,1,1)    4,2,1,1,1,1)
.                                       _________________________
      |A A A A A A B B B B B B B|      |           |             |
      |A A A A A A B B B B B B B|      |           |             |
      |A A A A A A B B B B B B B|      |    6      |             |
      |A A A A A A B B B B B B B|      |           |      7      |
      |A A A A A A B B B B B B B|      |           |             |
      |A A A A A A B B B B B B B|      |___________|             |
      |C C C C C D B B B B B B B|      |         |1|_____________|
      |C C C C C E E E E F F F F|      |         |       |       |
      |C C C C C E E E E F F F F|      |    5    |  4    |  4    |
      |C C C C C E E E E F F F F|      |         |       |       |
      |C C C C C E E E E F F F F|      |_________|_______|_______|
     _____________________________    _____________________________
         (13 X 11: 7,6,5,4,4,1)           (13 X 11: 7,6,5,4,4,1)
         [rotated by 90 degrees]         [alternate visualization]
.(End)
		

References

Crossrefs

Extensions

a(15)-a(16) from Kevin Johnston, Feb 11 2016
Title changed from Rainer Rosenthal, Dec 28 2022

A228267 Number T(n,k,r) of dissections of an n X k X r rectangular cuboid into integer-sided cubes including rotations and reflections; irregular triangle T(n,k,r), n >= k >= r >= 1 read by rows.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 1, 5, 10, 1, 1, 5, 1, 11, 31, 1, 35, 167, 2098, 1, 1, 8, 1, 21, 76, 1, 93, 635, 15511, 1, 314, 3354, 185473, 4006722, 1, 1, 13, 1, 43, 210, 1, 269, 2887, 151378, 1, 1213, 22478, 3243515, 143662050, 1, 6427, 235150, 112411358
Offset: 1

Views

Author

Keywords

Comments

The main diagonal T(n,n,n) is 1, 2, 10, 2098, 4006722, .... - R. J. Mathar and Rob Pratt, Nov 27 2017

Examples

			The irregular triangle begins:
.   r 1      2      3      4 ...
n,k
1,1   1
2,1   1
2,2   1      2
3,1   1
3,2   1      3
3,3   1      5     10
4,1   1
4,2   1      5
4,3   1     11     31
4,4   1     35    167   2098
5,1   1
5,2   1      8
5,3   1     21     76
5,4   1     93    635  15511
5,5   1    314   3354 185473 ...
...
T(3,2,2) = 3 because there are 3 distinct dissections of a 3 X 2 X 2 rectangular cuboid into integer-sided cubes. The dissections expanded into 2 dimensions are:
  ._____.    ._____.    ._____.
  |_|_|_|    |_|_|_|    |_|_|_|
  |_|_|_|    |_|_|_|    |_|_|_|
  ._____.    ._____.    ._____.
  |   |_|    |   |_|    |   |_|
  |___|_|    |___|_|    |___|_|
  ._____.    ._____.    ._____.
  |_|   |    |_|   |    |_|   |
  |_|___|    |_|___|    |_|___|
		

Crossrefs

Cf. A219924.

Formula

T(1,1,r) = T(n,n,1) = 1. - R. J. Mathar, Dec 03 2017
T(2,2,r) = A000045(r+1). - R. J. Mathar, Dec 03 2017
T(3,3,r>=1) = 1, 5, 10, 31, ... with g.f. 1/(1-x-4*x^2-x^3). - R. J. Mathar, Dec 03 2017
T(4,4,r>=1) = 1, 35, 167, 2098, 15511, 151378, 1272179, 11574563, 100928230, 900224006, ... with TBD rational g.f. - R. J. Mathar, Dec 03 2017
T(n,n,2) = A063443(n). - R. J. Mathar, Dec 03 2017

Extensions

20 more terms from R. J. Mathar, Dec 03 2017

A334617 a(n) is the number of ways to tile a size n staircase polyomino with staircase polyominoes.

Original entry on oeis.org

1, 2, 8, 57, 806, 20840, 1038266, 97115638, 17213517207, 5768580741287
Offset: 1

Views

Author

Peter Kagey, Sep 08 2020

Keywords

Comments

A size-n staircase polynomo is a polyomino consisting of n left-aligned rows in increasing length of 1, 2, ..., n. Rotations of staircase polyominoes are also polyominoes.

Examples

			For n = 3 the a(3) = 8 tilings are:
+---+          +---+          +---+          +---+
|   |          |   |          |   |          |   |
+---+---+      +   +---+      +---+---+      +---+---+
|   |   |      |       |      |   |   |      |   |   |
+---+---+---+, +---+---+---+, +   +---+---+, +---+   +---+,
|   |   |   |  |   |   |   |  |       |   |  |   |       |
+---+---+---+  +---+---+---+  +---+---+---+  +---+---+---+
+---+          +---+          +---+          +---+
|   |          |   |          |   |          |   |
+---+---+      +---+---+      +---+---+      +   +---+
|       |      |       |      |   |   |      |       |
+---+   +---+, +   +---+---+, +---+   +---+, +       +---+.
|   |   |   |  |   |   |   |  |       |   |  |           |
+---+---+---+  +---+---+---+  +---+---+---+  +---+---+---+
		

Crossrefs

Extensions

a(8) from Seiichi Manyama, Sep 09 2020
a(9)-a(10) from Bert Dobbelaere, Sep 12 2020
Previous Showing 21-25 of 25 results.