A224861
Number T(n,k) of tilings of an n X k rectangle using integer-sided square tiles reduced for symmetry, where the orbits under the symmetry group of the rectangle, D2, have 2 elements; triangle T(n,k), k >= 1, 0 <= n < k, read by columns.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 1, 4, 0, 0, 3, 3, 15, 0, 0, 4, 9, 38, 75, 0, 0, 9, 9, 68, 77, 604, 0, 0, 13, 21, 160, 311, 2384, 4556
Offset: 1
The triangle is:
n\k 1 2 3 4 5 6 7 8 ...
.
0 0 0 0 0 0 0 0 0 ...
1 0 0 0 0 0 0 0 ...
2 1 1 3 4 9 13 ...
3 4 3 9 9 21 ...
4 15 38 68 160 ...
5 75 77 311 ...
6 604 2384 ...
7 4556 ...
...
T(3,5) = 3 because there are 3 different sets of 2 tilings of the 3 X 5 rectangle by integer-sided squares, where any sequence of group D2 operations will transform each tiling in a set into the other in the same set. Group D2 operations are:
. the identity operation
. rotation by 180 degrees
. reflection about a horizontal axis through the center
. reflection about a vertical axis through the center
An example of a tiling in each set is:
._________. ._________. ._________.
| |_| | | |_|_|_| | |_|_|
|_ _|_|_ _| |___|_| | | |_|_|
|_|_|_|_|_| |_|_|_|___| |_____|_|_|
A224867
Number T(n,k) of tilings of an n X k rectangle using integer-sided square tiles reduced for symmetry, where the orbits under the symmetry group of the rectangle, D2, have 4 elements; triangle T(n,k), k >= 1, 0 <= n < k, read by columns.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 5, 21, 0, 0, 0, 10, 65, 440, 0, 0, 0, 27, 222, 1901, 14508, 0, 0, 0, 58, 676, 7716, 81119, 856559
Offset: 1
The triangle is:
n\k 1 2 3 4 5 6 7 8 ...
.
0 0 0 0 0 0 0 0 0 ...
1 0 0 0 0 0 0 0 ...
2 0 0 0 0 0 0 ...
3 1 5 10 27 58 ...
4 21 65 222 676 ...
5 440 1901 7716 ...
6 14508 81119 ...
7 856559 ...
...
T(3,5) = 5 because there are 5 different sets of 4 tilings of the 3 X 5 rectangle by integer-sided squares, where any sequence of group D2 operations will transform each tiling in a set into another in the same set. Group D2 operations are:
. the identity operation
. rotation by 180 degrees
. reflection about a horizontal axis through the center
. reflection about a vertical axis through the center
An example of a tiling in each set is:
._________. ._________. ._________. ._________. ._________.
| |_|_|_| |_| |_|_| | | |_| | |_|_|_| | | |
|_ _|_|_|_| |_|_ _|_|_| |_ _|_ _|_| |___| |_| |___| |
|_|_|_|_|_| |_|_|_|_|_| |_|_|_|_|_| |_|_|___|_| |_|_|_____|
A160911
a(n) is the number of arrangements of n square tiles with coprime sides in a rectangular frame, counting reflected, rotated or rearranged tilings only once.
Original entry on oeis.org
1, 1, 2, 5, 11, 29, 84, 267, 921, 3481, 14322, 62306, 285845, 1362662, 6681508, 33483830
Offset: 1
From _Rainer Rosenthal_, Dec 24 2022, updated May 09 2024: (Start)
.
|A|
|A B| |B|
|C D| (2 X 2: 1,1,1,1) |C| (4 X 1: 1,1,1,1)
|D|
.
|A A|
|A A A| |A A|
|A A A| |B B|
|A A A| (4 X 3: 3,1,1,1) |B B| (5 X 2: 2,2,1,1)
|B C D| |C D|
.
|A A A|
|A A A| <================= 3 X 3 minor A
|A A A| 2 X 2 minor B
|B B C| (5 X 3: 3,2,1,1) 1 X 1 minor C
|B B D| 1 X 1 minor D
________________________________________________________
a(4) = 5 illustrated as (p X q: t_1,t_2,t_3,t_4)
and as p X q matrices with t_i X t_i minors
.
Example configurations for a(6) = 29:
.
|A A A A|
|A A A A|
|A A A A|
|A A B| |A B| |A A A A|
|A A C| |C D| |B B C D|
|D E F| |E F| |B B E F|
______________________________________________
(3 X 3: (3 X 2: (6 X 4:
2,1,1,1,1,1) 1,1,1,1,1,1) 4,2,1,1,1,1)
. _________________________
|A A A A A A B B B B B B B| | | |
|A A A A A A B B B B B B B| | | |
|A A A A A A B B B B B B B| | 6 | |
|A A A A A A B B B B B B B| | | 7 |
|A A A A A A B B B B B B B| | | |
|A A A A A A B B B B B B B| |___________| |
|C C C C C D B B B B B B B| | |1|_____________|
|C C C C C E E E E F F F F| | | | |
|C C C C C E E E E F F F F| | 5 | 4 | 4 |
|C C C C C E E E E F F F F| | | | |
|C C C C C E E E E F F F F| |_________|_______|_______|
_____________________________ _____________________________
(13 X 11: 7,6,5,4,4,1) (13 X 11: 7,6,5,4,4,1)
[rotated by 90 degrees] [alternate visualization]
.(End)
Cf.
A002839,
A005670,
A113881,
A210517,
A217156,
A219924,
A221843,
A221844,
A221845,
A340726,
A342558,
A350237.
A228267
Number T(n,k,r) of dissections of an n X k X r rectangular cuboid into integer-sided cubes including rotations and reflections; irregular triangle T(n,k,r), n >= k >= r >= 1 read by rows.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 3, 1, 5, 10, 1, 1, 5, 1, 11, 31, 1, 35, 167, 2098, 1, 1, 8, 1, 21, 76, 1, 93, 635, 15511, 1, 314, 3354, 185473, 4006722, 1, 1, 13, 1, 43, 210, 1, 269, 2887, 151378, 1, 1213, 22478, 3243515, 143662050, 1, 6427, 235150, 112411358
Offset: 1
The irregular triangle begins:
. r 1 2 3 4 ...
n,k
1,1 1
2,1 1
2,2 1 2
3,1 1
3,2 1 3
3,3 1 5 10
4,1 1
4,2 1 5
4,3 1 11 31
4,4 1 35 167 2098
5,1 1
5,2 1 8
5,3 1 21 76
5,4 1 93 635 15511
5,5 1 314 3354 185473 ...
...
T(3,2,2) = 3 because there are 3 distinct dissections of a 3 X 2 X 2 rectangular cuboid into integer-sided cubes. The dissections expanded into 2 dimensions are:
._____. ._____. ._____.
|_|_|_| |_|_|_| |_|_|_|
|_|_|_| |_|_|_| |_|_|_|
._____. ._____. ._____.
| |_| | |_| | |_|
|___|_| |___|_| |___|_|
._____. ._____. ._____.
|_| | |_| | |_| |
|_|___| |_|___| |_|___|
A334617
a(n) is the number of ways to tile a size n staircase polyomino with staircase polyominoes.
Original entry on oeis.org
1, 2, 8, 57, 806, 20840, 1038266, 97115638, 17213517207, 5768580741287
Offset: 1
For n = 3 the a(3) = 8 tilings are:
+---+ +---+ +---+ +---+
| | | | | | | |
+---+---+ + +---+ +---+---+ +---+---+
| | | | | | | | | | |
+---+---+---+, +---+---+---+, + +---+---+, +---+ +---+,
| | | | | | | | | | | | | |
+---+---+---+ +---+---+---+ +---+---+---+ +---+---+---+
+---+ +---+ +---+ +---+
| | | | | | | |
+---+---+ +---+---+ +---+---+ + +---+
| | | | | | | | |
+---+ +---+, + +---+---+, +---+ +---+, + +---+.
| | | | | | | | | | | | |
+---+---+---+ +---+---+---+ +---+---+---+ +---+---+---+
Comments