cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A340797 Integers whose number of divisors that are Brazilian sets a new record.

Original entry on oeis.org

1, 7, 14, 24, 40, 48, 60, 84, 120, 168, 240, 336, 360, 420, 672, 720, 840, 1260, 1680, 2520, 3360, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 30240, 43680, 45360, 50400, 55440, 65520, 83160, 98280, 110880, 131040, 166320, 196560, 221760, 262080, 277200, 327600
Offset: 1

Views

Author

Bernard Schott, Jan 24 2021

Keywords

Comments

Corresponding number of Brazilian divisors: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 17, 18, 19, 26, ...
Observation: the 58 consecutive highly composite numbers from A002182(12) = 240 to A002182(69) = 2095133040 (maybe more, according to conjectured terms) are also terms of this sequence.

Examples

			40 has 8 divisors: {1, 2, 4, 5, 8, 10, 20, 40} of which 4 are Brazilian: {8, 10, 20, 40}. No positive integer smaller than 40 has as many as four Brazilian divisors; hence 40 is a term.
		

Crossrefs

Similar with: A093036 (palindromes), A340548 (repdigits), A340549 (repunits), A340637 (Niven), A340638 (Zuckerman).

Programs

  • Mathematica
    brazQ[n_] := Module[{b = 2, found = False}, While[b < n - 1 && Length[Union[ IntegerDigits[n, b]]] > 1, b++]; b < n - 1]; d[n_] := DivisorSum[n, 1 &, brazQ[#] &]; dm = -1; s = {}; Do[d1 = d[n]; If[d1 > dm, dm = d1; AppendTo[s, n]], {n, 1, 1000}]; s (* Amiram Eldar, Jan 24 2021 *)
  • PARI
    isb(n) = for(b=2, n-2, d=digits(n, b); if(vecmin(d)==vecmax(d), return(1))); \\ A125134
    nbd(n) = sumdiv(n, d, isb(d)); \\ A340795
    lista(nn) = {my(m=-1); for (n=1, nn, my(x = nbd(n)); if (x > m, print1(n, ", "); m = x););} \\ Michel Marcus, Jan 24 2021

Extensions

a(20)-a(36) from Michel Marcus, Jan 24 2021
a(37)-a(44) from Amiram Eldar, Jan 24 2021

A258165 Odd non-Brazilian numbers > 1.

Original entry on oeis.org

3, 5, 9, 11, 17, 19, 23, 25, 29, 37, 41, 47, 49, 53, 59, 61, 67, 71, 79, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 151, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 223, 227, 229, 233, 239, 251, 257, 263, 269, 271, 277, 281, 283, 289, 293, 311, 313, 317, 331, 337
Offset: 1

Views

Author

Keywords

Comments

Complement of A257521 in A144396 (odd numbers > 1).
The terms are only odd primes or squares of odd primes.
Most odd primes are present except those in A085104.
All terms which are not primes are squares of odd primes except 121 = 11^2.

Examples

			11 is present because there is no base b < 11 - 1 = 10 such that the representation of 11 in base b is a repdigit (all digits are equal). In fact, we have: 11 = 1011_2 = 102_3 = 23_4 = 21_5 = 15_6 = 14_7 = 13_8 = 12_9, and none of these representations are repdigits. - _Bernard Schott_, Jun 21 2017
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{b = 2}, While[b < n - 1 && Length@ Union@ IntegerDigits[n, b] > 1, b++]; b+1 == n]; Select[1 + 2 Range@ 170, fQ]
  • PARI
    forstep(n=3, 300, 2, c=1; for(b=2, n-2, d=digits(n, b); if(vecmin(d)==vecmax(d), c=0;  break));if(c,print1(n,", "))) \\ Derek Orr, May 27 2015
    
  • Python
    from sympy.ntheory.factor_ import digits
    l=[]
    for n in range(3, 301, 2):
        c=1
        for b in range(2, n - 1):
            d=digits(n, b)[1:]
            if max(d)==min(d):
                c=0
                break
        if c: l.append(n)
    print(l) # Indranil Ghosh, Jun 22 2017, after PARI program

A325323 Palindromes in base 10 that are not Brazilian.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 787, 797, 919, 929, 10201, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741, 15451, 15551, 16061, 16361, 16561, 16661, 17471, 17971, 18181, 18481, 19391, 19891, 19991
Offset: 1

Views

Author

Bernard Schott, Apr 20 2019

Keywords

Comments

The terms >= 11 of this sequence are either prime palindromes which are not Brazilian, or square of primes (except 121).

Crossrefs

Intersection of A002113 and A220570.
Complement of A325322 with respect to A002113.
Cf. A088882 (Palindromes not repdigits).

Programs

  • Mathematica
    brazQ[n_] := Module[{b = 2, found = False}, While[b < n - 1 && Length @ Union[IntegerDigits[n, b]] > 1, b++]; b < n - 1]; Select[Range[20000], PalindromeQ[#] && !brazQ[#] &] (* Amiram Eldar, Apr 14 2021 *)
  • PARI
    isb(n) = for(b=2, n-2, my(d=digits(n, b)); if(vecmin(d)==vecmax(d), return(1))); \\ A125134
    isp(n) = my(d=digits(n)); d == Vecrev(d); \\ A002113
    isok(n) = !isb(n) && isp(n); \\ Michel Marcus, Apr 22 2019

A326708 Non-Brazilian squares of primes.

Original entry on oeis.org

4, 9, 25, 49, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761
Offset: 1

Views

Author

Bernard Schott, Aug 26 2019

Keywords

Comments

This sequence is a subsequence of A326707.
For these terms, we have the relations beta'(p^2) = beta"(p^2) = beta(p^2) = (tau(p^2) - 3)/2 = 0.
This sequence = A001248 \ {121} because 121 is the only known square of a prime that is Brazilian (Wikipédia link); 121 is a solution y^q of the Nagell-Ljunggren equation y^q = (b^m-1)/(b-1) with y = 11, q =2, b = 3, m = 5 (see A208242), hence 121 = 11^2 = (3^5 -1)/2 = 11111_3.
The corresponding square roots are: 2, 3, 5, 7, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, ...

Examples

			49 = 7^2 is not Brazilian, so beta(49) = 0 with tau(49) = 3.
		

Crossrefs

Cf. A190300.
Subsequence of A000290 and of A220570 and of A190300.
Intersection of A001248 and A326707.

Programs

  • Mathematica
    brazBases[n_] := Select[Range[2, n - 2], Length[Union[IntegerDigits[n, #]]] == 1 &]; Select[Range[2, 1000], PrimeQ[#^(1/2)]&& brazBases[#] == {} &] (* Metin Sariyar, Sep 05 2019 *)

A336144 Integers that are Colombian and not Brazilian.

Original entry on oeis.org

1, 3, 5, 9, 53, 97, 233, 277, 367, 389, 457, 479, 547, 569, 613, 659, 727, 839, 883, 929, 1021, 1087, 1109, 1223, 1289, 1447, 1559, 1627, 1693, 1783, 1873, 2099, 2213, 2347, 2437, 2459, 2503, 2549, 2593, 2617, 2683, 2729, 2819, 2953, 3023, 3067, 3089, 3313, 3359
Offset: 1

Views

Author

Bernard Schott, Jul 14 2020

Keywords

Comments

There are no even terms because 2, 4 and 6 are not Colombian as 2 = 1 + (sum of digits of 1), 4 = 2 + (sum of digits of 2) and 6 = 3 + (sum of digits of 3), then every even integer >= 8 is Brazilian.

Examples

			233 is a term because 233 is not of the form m + (sum of digits of m) for any m < 233, so 233 is Colombian and there is no Brazilian representation for 233.
		

Crossrefs

Intersection of A003052 (Colombian) and A220570 (non-Brazilian).
Cf. A125134 (Brazilian), A333858 (Brazilian and Colombian), A336143 (Brazilian and not Colombian), this sequence (Colombian and not Brazilian).

Programs

  • Mathematica
    brazQ[n_] := Module[{b = 2, found = False}, While[b < n - 1 && Length[Union[IntegerDigits[n, b]]] > 1, b++]; b < n - 1]; n = 4000; Select[Complement[Range[n], Union @ Table[Plus @@ IntegerDigits[k] + k, {k, 1, n}]], !brazQ[#] &] (* Amiram Eldar, Jul 14 2020 *)

A341057 Numbers without Brazilian divisors.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 11, 17, 19, 23, 25, 29, 37, 41, 47, 53, 59, 61, 67, 71, 79, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, 223, 227, 229, 233, 239, 251, 257, 263, 269, 271, 277, 281, 283, 289, 293, 311
Offset: 1

Views

Author

Bernard Schott, Feb 04 2021

Keywords

Comments

The first 16 terms are the first 16 terms of A220570 (non-Brazilian numbers), then a(17) = 53 while A220570(17) = 49.
m is a term iff m = 1, or m = 6, or m is a non-Brazilian prime (A220627) or m is the square of a non-Brazilian prime, except for 121 that is Brazilian (see examples).

Examples

			One example for each type of terms that has k divisors:
-> k=1: 1 is the smallest number not Brazilian, hence 1 is the first term.
-> k=2: 17 is a prime non-Brazilian, hence 17 is a term.
-> k=3: 25 has three divisors {1, 5, 25} that are all not Brazilian, hence 25 is another term.
-> k=4: 6 has four divisors {1, 2, 3, 6} that are all not Brazilian, hence 6 is the term that has the largest number of divisors.
		

Crossrefs

Cf. A125134, A340795, A308851, A341058 (with 1 Brazilian divisor).
Subsequence of A220570 (non-Brazilian numbers).
Supersequence of A220627 (non-Brazilian primes).

Programs

  • Mathematica
    brazQ[n_] := Module[{b = 2, found = False}, While[b < n - 1 && Length @ Union @ IntegerDigits[n, b] > 1, b++]; b < n - 1]; q[n_] := AllTrue[Divisors[n], ! brazQ[#] &]; Select[Range[300], q] (* Amiram Eldar, Feb 04 2021 *)
  • PARI
    isb(n) = for(b=2, n-2, my(d=digits(n, b)); if(vecmin(d)==vecmax(d), return(1))); \\ A125134
    isok(n) = fordiv(n, d, if (isb(d), return(0))); return(1); \\ Michel Marcus, Feb 07 2021

Formula

A340795(a(n)) = 0.

A326775 For any n >= 0, let b >= 2 be the smallest base where n has all digits equal, say to d; a(n) = d.

Original entry on oeis.org

0, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 3, 4, 1, 3, 1, 4, 3, 2, 5, 4, 1, 2, 3, 1, 1, 2, 1, 4, 5, 2, 1, 6, 1, 5, 3, 4, 1, 6, 5, 4, 1, 2, 1, 6, 1, 2, 1, 4, 5, 6, 1, 4, 3, 7, 1, 6, 1, 2, 5, 4, 7, 6, 1, 2, 3, 2, 1, 7, 1, 2
Offset: 0

Views

Author

Rémy Sigrist, Jul 28 2019

Keywords

Comments

A059711 gives base b.
From Bernard Schott, Aug 17 2019: (Start)
a(n) = 1 iff n is A220570, then n = 11_(n-1) or, n is in A053696, then n = 11..11_b for some base b.
a(n) = 2 if n = 2 * p, p prime >= 5.
a(n) = 3 if n = 3 * p, p prime >= 11.
There are k = 2 equal digits in the representation of n in the corresponding base b, except when n is a term of A167782, in which case the number k of equal digits is >= 3. (End)
n = (b^k - 1)/(b - 1) * a(n) so a(n) | n for n > 0. Furthermore a(n) <= sqrt(n). - David A. Corneth, Aug 21 2019
If b is the smallest base such that n=d*b^k+...+d*b^0 (A059711) (d=a(n) is the repdigit) then n mod b = (d*b^k+...+d*b^0) mod b = (d*b^k+...+d*b^1) mod b + (d*b^0) mod b = 0 + (d*1) mod b. Since d is less than the base we end up with the formula n mod b = d. - Jon Maiga, May 31 2021

Examples

			For n = 45:
- we have:
     b  45 in base b  Repdigit ?
     -  ------------  ----------
     2  101101        no
     3  1200          no
     4  231           no
     5  140           no
     6  113           no
     7  63            no
     8  55            yes, with d = 5
- hence a(45) = 5.
		

Crossrefs

Programs

  • PARI
    a(n) = for (b=2, oo, if (#Set(digits(n,b))<=1, return (n%b)))
    
  • Python
    # with library / without (faster for large n)
    from sympy.ntheory import digits
    def is_repdigit(n, b): return len(set(digits(n, b)[1:])) == 1
    def is_repdigit(n, b):
      if n < b: return True
      n, r = divmod(n, b)
      onlyd = r
      while n > b:
        n, r = divmod(n, b)
        if r != onlyd: return False
      return n == onlyd
    def a(n):
      for b in range(2, n+3):
        if is_repdigit(n, b): return n%b
    print([a(n) for n in range(87)]) # Michael S. Branicky, May 31 2021

Formula

n is a multiple of a(n).
a(n) = n mod A059711(n). - Jon Maiga, May 31 2021

A336307 Numbers that are neither Colombian nor Brazilian.

Original entry on oeis.org

2, 4, 6, 11, 17, 19, 23, 25, 29, 37, 41, 47, 49, 59, 61, 67, 71, 79, 83, 89, 101, 103, 107, 109, 113, 131, 137, 139, 149, 151, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 223, 227, 229, 239, 251, 257, 263, 269, 271, 281, 283, 289, 293, 311, 313, 317, 331
Offset: 1

Views

Author

Bernard Schott, Jul 17 2020

Keywords

Comments

The only even terms are 2, 4 and 6 because 2 = 1 + (sum of digits of 1), 4 = 2 + (sum of digits of 2), 6 = 3 + (sum of digits of 3) so these integers are not Colombian then also, because an even number is Brazilian iff it is >= 8.
A333858, A336143, A336144 and this sequence form a partition of the set of positive integers N* ( A000027).

Examples

			For b = 17, there is no repdigit in some base b < 16 equal to 17, hence 17 is not Brazilian and 17 = 13 + (sum of digits of 13) hence 17 is not Colombian, so 17 is a term.
		

Crossrefs

Intersection of A220570 (not Brazilian) and A176995 (not Colombian).
Cf. A003052 (Colombian), A125134 (Brazilian), A333858 (Brazilian and Colombian), A336143 (Brazilian not Colombian), A336144 (Colombian not Brazilian).

Programs

  • Mathematica
    brazQ[n_] := Module[{b = 2, found = False}, While[b < n - 1 && Length[ Union[ IntegerDigits[n, b]]] > 1, b++]; b < n - 1]; n = 300; Select[Union @ Table[Plus @@ IntegerDigits[k] + k, {k, 1, n}], # <= n && !brazQ[#] &] (* Amiram Eldar, Jul 17 2020 *)
Previous Showing 11-18 of 18 results.