cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A361782 Numerators of the harmonic means of the bi-unitary divisors of the positive integers.

Original entry on oeis.org

1, 4, 3, 8, 5, 2, 7, 32, 9, 20, 11, 12, 13, 7, 5, 64, 17, 12, 19, 8, 21, 22, 23, 16, 25, 52, 27, 14, 29, 10, 31, 64, 11, 68, 35, 72, 37, 38, 39, 32, 41, 7, 43, 44, 3, 23, 47, 32, 49, 100, 17, 104, 53, 18, 55, 56, 57, 116, 59, 4, 61, 31, 63, 384, 65, 11, 67, 136
Offset: 1

Views

Author

Amiram Eldar, Mar 24 2023

Keywords

Examples

			Fractions begin with 1, 4/3, 3/2, 8/5, 5/3, 2, 7/4, 32/15, 9/5, 20/9, 11/6, 12/5, ...
		

Crossrefs

Cf. A188999, A222266, A286324, A361783 (denominators).
Similar sequences: A099377, A103339, A361316.

Programs

  • Mathematica
    f[p_, e_] := p^e * If[OddQ[e], (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2))]; a[1] = 1; a[n_] := Numerator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); numerator(n * prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2];  if(e%2, (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2))))); }

Formula

a(n) = numerator(n*A286324(n)/A188999(n)).
f(n) = a(n)/A361783(n) is multiplicative with f(p^e) = (e+1)*(p-1)/(p^(e+1)-1) if e is odd, and e/((p^(e+1)-1)/(p-1) - p^(e/2)) if e is even.

A361783 Denominators of the harmonic means of the bi-unitary divisors of the positive integers.

Original entry on oeis.org

1, 3, 2, 5, 3, 1, 4, 15, 5, 9, 6, 5, 7, 3, 2, 27, 9, 5, 10, 3, 8, 9, 12, 5, 13, 21, 10, 5, 15, 3, 16, 21, 4, 27, 12, 25, 19, 15, 14, 9, 21, 2, 22, 15, 1, 9, 24, 9, 25, 39, 6, 35, 27, 5, 18, 15, 20, 45, 30, 1, 31, 12, 20, 119, 21, 3, 34, 45, 8, 9, 36, 25, 37, 57
Offset: 1

Views

Author

Amiram Eldar, Mar 24 2023

Keywords

Crossrefs

Cf. A188999, A222266, A286324, A286325 (positions of 1's), A361782 (numerators).
Similar sequences: A099378, A103340, A361317.

Programs

  • Mathematica
    f[p_, e_] := p^e * If[OddQ[e], (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2))]; a[1] = 1; a[n_] := Denominator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); denominator(n * prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2];  if(e%2, (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2))))); }

Formula

a(n) = denominator(n*A286324(n)/A188999(n)).

A379027 Irregular table read by rows in which the n-th row lists the modified exponential divisors of n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 3, 6, 1, 7, 1, 2, 8, 1, 9, 1, 2, 5, 10, 1, 11, 1, 3, 4, 12, 1, 13, 1, 2, 7, 14, 1, 3, 5, 15, 1, 16, 1, 17, 1, 2, 9, 18, 1, 19, 1, 4, 5, 20, 1, 3, 7, 21, 1, 2, 11, 22, 1, 23, 1, 2, 3, 6, 8, 24, 1, 25, 1, 2, 13, 26, 1, 3, 27, 1, 4, 7, 28
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2024

Keywords

Comments

If the prime factorization of n is Product_{i} p_i^e_i, then the modified exponential divisors of n are all the divisors of n that are of the form Product_{i} p_i^b_i such that 1 + b_i | 1 + e_i for all i.

Examples

			The table starts:
  1;
  1, 2;
  1, 3;
  1, 4;
  1, 5;
  1, 2, 3, 6;
  1, 7;
  1, 2, 8;
  1, 9;
  1, 2, 5, 10;
  1, 11;
  1, 3, 4, 12;
		

Crossrefs

Cf. A379028 (row lengths), A241405 (row sums).
Similar tables: A027750 (all divisors), A077609 (infinitary), A077610 (unitary), A222266 (bi-unitary), A322791 (exponential), A361255 (exponential unitary).

Programs

  • Mathematica
    modexpDivQ[n_, d_] := Module[{f = FactorInteger[n]}, And @@ MapThread[Divisible, {f[[;; , 2]] + 1, IntegerExponent[d, f[[;; , 1]]] + 1}]]; row[1] = {1}; row[n_] := Select[Divisors[n], modexpDivQ[n, #] &]; Table[row[n], {n, 1, 28}] // Flatten
  • PARI
    ismodexpdiv(f, d) = {my(e); for(i=1, #f~, e = valuation(d, f[i, 1]); if((f[i, 2]+1) % (e+1), return(0))); 1; }
    row(n) = {my(f = factor(n), d = divisors(f), mediv = [1]); if(n == 1, return(mediv)); for(i=2, #d, if(ismodexpdiv(f, d[i]), mediv = concat(mediv, d[i]))); mediv; }

A331970 The sum of the proper bi-unitary divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 6, 1, 7, 1, 8, 1, 8, 1, 10, 9, 11, 1, 12, 1, 10, 11, 14, 1, 36, 1, 16, 13, 12, 1, 42, 1, 31, 15, 20, 13, 14, 1, 22, 17, 50, 1, 54, 1, 16, 15, 26, 1, 60, 1, 28, 21, 18, 1, 66, 17, 64, 23, 32, 1, 60, 1, 34, 17, 55, 19, 78, 1, 22, 27, 74, 1, 78, 1
Offset: 1

Views

Author

Amiram Eldar, Feb 03 2020

Keywords

Comments

First differs from A126168 at n = 16.

Examples

			a(6) = 6 since A188999(6) - 6 = 12 - 6 = 6.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := If[OddQ[e], (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := bsigma[n] = Times @@ (fun @@@ FactorInteger[n]); bs[n_] := bsigma[n] - n; Array[bs, 100]

Formula

a(n) = A188999(n) - n.

A363332 a(n) is the number of divisors of n that are both coreful and bi-unitary.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, May 28 2023

Keywords

Comments

For the definition of a coreful divisor see A307958, and for the definition of a bi-unitary divisor see A222266.
If e > 0 is the exponent of the highest power of p dividing n (where p is a prime), then for each divisor d of n that is both a coreful and an bi-unitary divisor, the exponent of the highest power of p dividing d is a number k >= 1 that is not equal to e/2.
All the terms are odd.

Examples

			a(8) = 3 since 8 has 4 divisors, 1, 2, 4 and 8, all are bi-unitary and 3 of them (2, 4 and 8) are also coreful.
		

Crossrefs

Cf. A004709, A005361 (number of coreful divisors), A222266, A286324, A362852.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], e, e - 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 120]
  • PARI
    a(n)={my(e = factor(n)[,2]); prod(i=1, #e, e[i] - 1 + e[i] % 2);}

Formula

Multiplicative with a(p^e) = e - 1 + (e mod 2).
a(n) = 1 if and only if n is cubefree (A004709).
a(n) >= A362852(n), with equality if and only if n is cubefree.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 2/(p^3-p)) = 1.48264570900305853294... .
Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 - 1/p^(2*s) + 2/p^(3*s)). - Amiram Eldar, Sep 24 2023

A368978 The number of bi-unitary divisors of n that are squares (A000290).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2024

Keywords

Comments

First differs from A007424, A278908, A307848, A323308, A358260 and A365549 at n = 32.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (e + 1)/2, 2*Floor[(e+2)/4]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2, (x+1)/2, 2*((x+2)\4)), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = (e + 1)/2 if e is odd, and 2*floor((e+2)/4) if e is even.
a(n) >= 1, with equality if and only if n is squarefree (A005117).
a(n) <= A286324(n), with equality if and only if n is in A062503.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(4) * Product_{p prime} (1 + 1/p^2 - 1/p^4 + 1/p^5) = 1.58922450321701775833... .

A331971 a(n) is the number of values of m such that the sum of proper bi-unitary divisors of m (A331970) is n.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 1, 3, 2, 3, 1, 3, 1, 3, 2, 4, 1, 6, 1, 4, 2, 4, 2, 5, 0, 3, 1, 4, 2, 5, 1, 4, 2, 4, 1, 6, 2, 5, 2, 5, 2, 8, 1, 6, 1, 4, 2, 7, 1, 5, 3, 5, 2, 8, 0, 5, 1, 6, 1, 8, 2, 5, 3, 6, 3, 9, 0, 6, 2, 5, 1, 9, 1, 7, 1
Offset: 2

Views

Author

Amiram Eldar, Feb 03 2020

Keywords

Comments

The bi-unitary version of A048138.
The offset is 2 as in A048138 since there are infinitely many numbers k (the primes and squares of primes) for which A331970(k) = 1.

Examples

			a(8) = 2 since 8 is the sum of the proper bi-unitary divisors of 2 numbers: 10 (1 + 2 + 5) and 12 (1 + 3 + 4).
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := If[OddQ[e], (p^(e + 1) - 1)/(p - 1), (p^(e + 1) - 1)/(p - 1) - p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); bs[n_] := bsigma[n] - n; m = 300; v = Table[0, {m}]; Do[b = bs[k]; If[2 <= b <= m, v[[b]]++], {k, 1, m^2}]; Rest @ v

A335385 The number of tri-unitary divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 2, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jun 04 2020

Keywords

Comments

A divisor d of k is tri-unitary if the greatest common bi-unitary divisor of d and k/d is 1.
Differs from A037445 at n = 32, 96, 128, 160, 224, ...

Examples

			a(4) = 2 since 4 has 2 tri-unitary divisors, 1 and 4. 2 is not a tri-unitary divisor of 4 since the greatest common bi-unitary divisor of 2 and 4/2 = 2 is 2 and not 1.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 3 || e == 6, 4, 2]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x == 3 || x == 6, 4, 2), factor(n)[, 2])); \\ Amiram Eldar, Dec 18 2023

Formula

Multiplicative with a(p^e) = 4 if e = 3 or 6, and a(p^e) = 2 otherwise.

A368977 The number of bi-unitary divisors of n that are exponentially odd numbers (A268335).

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 3, 1, 4, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 4, 4, 2, 6, 1, 4, 3, 2, 2, 8, 2, 4, 4, 4, 4, 1, 2, 4, 4, 6, 2, 8, 2, 2, 2, 4, 2, 6, 1, 2, 4, 2, 2, 6, 4, 6, 4, 4, 2, 4, 2, 4, 2, 3, 4, 8, 2, 2, 4, 8, 2, 3, 2, 4, 2, 2, 4, 8, 2, 6, 3, 4, 2, 4, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (e+3)/2, 2*Floor[e/4]+1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2, (x+3)/2, 2*(x\4)+1), factor(n)[, 2]));
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X - X^2 + 2*X^3 - X^4)/(1 - X - X^4 + X^5))[n], ", ")) \\ Vaclav Kotesovec, Jan 11 2024

Formula

Multiplicative with a(p^e) = (e+3)/2 if e is odd, and 2*floor(e/4)+1 if e is even.
a(n) >= 1, with equality if and only if n is in A062503.
a(n) <= A000005(n), with equality if and only if n is squarefree (A005117).
From Vaclav Kotesovec, Jan 11 2024: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - (1 - p^s + 2*p^(2*s)) / (p^s*(1 + p^s)*(1 + p^(2*s)))).
Let f(s) = Product_{p prime} (1 - (1 - p^s + 2*p^(2*s)) / (p^s*(1 + p^s)*(1 + p^(2*s)))).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - (1 - p + 2*p^2) / (p*(1 + p)*(1 + p^2))) = 0.5715031234451924252215041182933420817059774181158824297150124265420835...,
f'(1) = f(1) * Sum_{p prime} (4*p^5 - p^4 + 2*p^3 + 2*p + 1) * log(p) / (p^7 + 2*p^6 + p^5 + 3*p^4 + p^3 + p - 1) = f(1) * 1.1422556395248477875508983912036578244050011522937179465478688905880430...
and gamma is the Euler-Mascheroni constant A001620. (End)

A293618 Numbers n that equal the sum of their first k consecutive aliquot bi-unitary divisors, but not all of them (i.e k < A286324(n)-1).

Original entry on oeis.org

24, 360, 432, 1344, 2016, 19440, 45360, 68544, 714240, 864000, 1468800, 1571328, 1900800, 2391120, 2888704, 3057600, 4586400, 5241600, 103194000
Offset: 1

Views

Author

Amiram Eldar, Oct 13 2017

Keywords

Comments

The bi-unitary version of Erdős-Nicolas numbers (A194472).
If all the aliquot bi-unitary divisors are permitted (i.e. k <= A286324(n)-1), then the 3 bi-unitary perfect numbers, 6, 60 and 90, are included.

Examples

			24 is in the sequence since its aliquot bi-unitary divisors are 1, 2, 3, 4, 6, 8, 12 and 24 and 1 + 2 + 3 + 4 + 6 + 8 = 24.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bdiv[m_] := Select[Divisors[m], Last@Intersection[f@#, f[m/#]] == 1 &]; subtr = If[#1 < #2, Throw[#1], #1 - #2] &; selDivs[n_] := Catch@Fold[subtr, n, Drop[bdiv[n], -2]]; a = {}; Do[ If[selDivs[n] == 0, AppendTo[a, n]; Print[n]], {n, 2, 10^6}]; a (* after Alonso del Arte at A194472 *)
Previous Showing 11-20 of 28 results. Next