cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A229226 The partition function G(n,9).

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115974, 678558, 4213452, 27642837, 190882290, 1382779413, 10478259030, 82844940414, 681863474058, 5830425411936, 51698581146426, 474582397380708, 4503425395487976, 44113612993755306, 445502134752984696
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2013

Keywords

Comments

Number G(n,9) of set partitions of {1,...,n} into sets of size at most 9.

Crossrefs

Column k=9 of A229223.
Cf. A276929.

Programs

  • Maple
    G:= proc(n, k) option remember; local j; if k>n then G(n, n)
          elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
          for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
        end:
    a:= n-> G(n, 9):
    seq(a(n), n=0..30);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
           a(n-i)*binomial(n-1, i-1), i=1..min(n, 9)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 22 2016
  • Mathematica
    CoefficientList[Exp[Sum[x^j/j!, {j, 1, 9}]] + O[x]^25, x]*Range[0, 24]! (* Jean-François Alcover, May 21 2018 *)

Formula

E.g.f.: exp(Sum_{j=1..9} x^j/j!).

A229227 The partition function G(n,10).

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678569, 4213584, 27644267, 190897305, 1382935569, 10479884654, 82861996310, 682044632178, 5832378929502, 51720008131148, 474821737584174, 4506150050048604, 44145239041717738, 445876518513670356
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2013

Keywords

Comments

Number G(n,10) of set partitions of {1,...,n} into sets of size at most 10.

Crossrefs

Column k=10 of A229223.
Cf. A276930.

Programs

  • Maple
    G:= proc(n, k) option remember; local j; if k>n then G(n, n)
          elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
          for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
        end:
    a:= n-> G(n, 10):
    seq(a(n), n=0..30);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
           a(n-i)*binomial(n-1, i-1), i=1..min(n, 10)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 22 2016
  • Mathematica
    CoefficientList[Exp[Sum[x^j/j!, {j, 1, 10}]] + O[x]^25, x]*Range[0, 24]! (* Jean-François Alcover, May 21 2018 *)

Formula

E.g.f.: exp(Sum_{j=1..10} x^j/j!).

A229228 Number of set partitions of {1,...,2n} into sets of size at most n.

Original entry on oeis.org

1, 1, 10, 166, 3795, 112124, 4163743, 190168577, 10468226150, 681863474058, 51720008131148, 4506628734688128, 445956917001833090, 49631199898024188422, 6160538225093750695800, 846748983034696433927334, 128064669166890886264698699, 21195039362681903376709497444
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2013

Keywords

Examples

			a(2) = 10: 1/2/3/4, 12/3/4, 13/2/4, 14/2/3, 1/23/4, 1/24/3, 1/2/34, 12/34, 13/24, 14/23.
		

Crossrefs

Column k=2 of A229243.
Cf. A229223.

Programs

  • Maple
    G:= proc(n, k) option remember; local j; if k>n then G(n, n)
          elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
          for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
        end:
    a:= n-> G(2*n, n):
    seq(a(n), n=0..20);
  • Mathematica
    G[n_, k_] := G[n, k] = If[n == 0, 1, If[k < 1, 0, Sum[G[n - k*j, k - 1]*n!/ k!^j/(n - k*j)!/j!, {j, 0, n/k}]]];
    Table[G[2n, n], {n, 0, 20}] (* Jean-François Alcover, May 21 2018, translated from Maple *)

Formula

a(n) = (2n)! * [x^(2n)] exp(Sum_{j=1..n} x^j/j!).
a(n) = A229223(2n,n).

A229229 Number of set partitions of {1,...,n^2} into sets of size at most n.

Original entry on oeis.org

1, 1, 10, 12644, 6631556521, 3282701194678476257, 3025262978042089315465899013351, 9292286146024114784457467780130028866860171013, 158655194198118596873150397161518177395553186289541468458000908304
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2013

Keywords

Examples

			a(2) = 10: 1/2/3/4, 12/3/4, 13/2/4, 14/2/3, 1/23/4, 1/24/3, 1/2/34, 12/34, 13/24, 14/23.
		

Crossrefs

Main diagonal of A229243.
Cf. A229223.

Programs

  • Maple
    G:= proc(n, k) option remember; local j; if k>n then G(n, n)
          elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
          for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
        end:
    a:= n-> G(n^2, n):
    seq(a(n), n=0..10);
  • Mathematica
    G[n_, k_] := G[n, k] = Module[{j, pc}, Which[k>n, G[n, n], n==0, 1, k<1, 0, True, pc = G[n-k, k]; For[j = k-1, j >= 1, j--, pc = pc*(n-j)/j + G[n-j, k]]; pc]]; a[n_] := G[n^2, n]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Feb 15 2017, translated from Maple *)

Formula

a(n) = (n^2)! * [x^(n^2)] exp(Sum_{j=1..n} x^j/j!).
a(n) = A229223(n^2,n).

A227223 Number of set partitions of {1,...,2^n} into sets of size at most n.

Original entry on oeis.org

0, 1, 10, 2780, 6631556521, 71669271794142235712392433, 78417479379491793666843945562521255790293292270929676484784808001
Offset: 0

Views

Author

Alois P. Heinz, Sep 19 2013

Keywords

Examples

			a(2) = 10: 1/2/3/4, 12/3/4, 13/2/4, 14/2/3, 1/23/4, 1/24/3, 1/2/34, 12/34, 13/24, 14/23.
		

Crossrefs

Cf. A229223.

Programs

  • Maple
    G:= proc(n, k) option remember; local j; if k>n then G(n, n)
          elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
          for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
        end:
    a:= n-> G(2^n, n):
    seq(a(n), n=0..7);
  • Mathematica
    G[n_, k_] := G[n, k] = Module[{j, g}, Which[k > n, G[n, n], n == 0, 1, k < 1, 0, True, g = G[n-k, k]; For[j = k-1, j >= 1, j--, g = g*(n-j)/j + G[n-j, k]]; g]]; a[n_] := G[2^n, n]; Table[a[n], {n, 0, 7}] (* Jean-François Alcover, Dec 30 2013, translated from Maple *)

Formula

a(n) = (2^n)! * [x^(2^n)] exp(Sum_{j=1..n} x^j/j!).
a(n) = A229223(2^n,n).

A229413 Number of set partitions of {1,...,3n} into sets of size at most n.

Original entry on oeis.org

1, 1, 76, 12644, 3305017, 1245131903, 654277037674, 467728049807348, 443694809361207824, 544852927413901502514, 846359710104516310431744, 1629392161877794034658847500, 3819592516111353522143561652540, 10738740219595085951726635839975852
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2013

Keywords

Crossrefs

Column k=3 of A229243.
Cf. A229223.

Programs

  • Maple
    G:= proc(n, k) option remember; local j; if k>n then G(n, n)
          elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
          for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
        end:
    a:= n-> G(3*n, n):
    seq(a(n), n=0..20);
  • Mathematica
    G[n_, k_] := G[n, k] = Module[{j, g}, Which[k > n, G[n, n], n == 0, 1, k < 1, 0, True, g = G[n - k, k]; For[j = k - 1, j >= 1, j--, g = g(n-j)/j + G[n - j, k]]; g]];
    a[n_] := G[3n, n];
    a /@ Range[0, 20] (* Jean-François Alcover, Dec 10 2020, after Alois P. Heinz *)

Formula

a(n) = (3n)! * [x^(3n)] exp(Sum_{j=1..n} x^j/j!).
a(n) = A229223(3n,n).

A229414 Number of set partitions of {1,...,3n} into sets of size at most 3.

Original entry on oeis.org

1, 5, 166, 12644, 1680592, 341185496, 97620050080, 37286121988256, 18280749571449664, 11168256342434121152, 8306264068494786829696, 7380771881944947770497280, 7715405978050522488223499776, 9365880670184268387214967727104, 13058232187415887547449498864463872
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2013

Keywords

Crossrefs

Row n=3 of A229243.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 5, 166][n+1],
          ((108*n^2-72*n+4)*a(n-1)-6*(n-1)*(3*n-5)*(27*n^2-48*n+10)*a(n-2)
           +9*(n-1)*(n-2)*(3*n-1)*(3*n-7)*(3*n-5)*(3*n-8)*a(n-3))/8)
        end:
    seq(a(n), n=0..20);
  • Mathematica
    G[n_, k_] := G[n, k] = Module[{j, g}, Which[k > n, G[n, n], n == 0, 1, k < 1, 0, True, g = G[n - k, k]; For[j = k - 1, j >= 1, j--, g = g(n-j)/j + G[n - j, k]]; g]];
    a[n_] := G[3n, 3];
    a /@ Range[0, 20] (* Jean-François Alcover, Dec 10 2020, after Alois P. Heinz in A229243 *)

Formula

a(n) = (3n)! * [x^(3n)] exp(x + x^2/2 + x^3/6).
a(n) = A001680(3n) = A229223(3n,3).

A379707 Number of nonempty labeled antichains of subsets of [n] such that all subsets except possibly those of the largest size are disjoint.

Original entry on oeis.org

1, 2, 5, 19, 133, 2605, 1128365, 68731541392, 1180735736455875189405, 170141183460507927984536600089529165335, 7237005577335553223087828975127304180898559033209149835788539833222132944557
Offset: 0

Views

Author

John Tyler Rascoe, Dec 30 2024

Keywords

Examples

			For n < 4 all nonempty labeled antichains are counted. When n=6 antichains such as {{1,2,6},{1,4},{1,5}} are not counted, while {{1,2,4},{1,2,6},{3},{5}} is counted.
		

Crossrefs

Programs

  • Python
    from math import comb
    def rS2(n,k,m):
        if n < 1 and k < 1: return 1
        elif n < 1 or k < 1: return 0
        else: return k*rS2(n-1,k,m) + rS2(n-1,k-1,m)- comb(n-1,m)*rS2(n-1-m,k-1,m)
    def A229223(n,k):
        return sum(rS2(n,x,k) for x in range(n+1))
    def A379707(n):
        return 1+sum(sum(comb(n,i)*(2**comb(n-i,s)-1)*A229223(i,s-1) for i in range(n-s+1)) for s in range(1,n+1))

Formula

a(n) = 1 + Sum_{s=1..n} (Sum_{i=0..n-s} binomial(n,i) * (2^binomial(n-i,s) - 1) * A229223(i,s-1)).

A295343 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(-Sum_{j=1..k} x^j/j!).

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -1, 1, 0, 1, -1, 0, -1, 0, 1, -1, 0, 2, 1, 0, 1, -1, 0, 1, -2, -1, 0, 1, -1, 0, 1, 2, -6, 1, 0, 1, -1, 0, 1, 1, -6, 16, -1, 0, 1, -1, 0, 1, 1, -1, -14, 20, 1, 0, 1, -1, 0, 1, 1, -2, -14, 20, -132, -1, 0, 1, -1, 0, 1, 1, -2, -8, -15, 204, -28, 1, 0, 1, -1, 0, 1, 1, -2, -9, -15, 99, 28, 1216, -1, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 20 2017

Keywords

Examples

			Square array begins:
1,  1,  1,  1,  1,  1,  ...
0, -1  -1, -1, -1, -1,  ...
0,  1,  0,  0,  0,  0,  ...
0, -1,  2,  1,  1,  1,  ...
0,  1, -2,  2,  1,  1,  ...
0, -1, -6, -6, -1, -2,  ...
		

Crossrefs

Columns k=0..3 give A000007, A033999, A001464, A014775.
Main diagonal gives A000587.
Cf. A229223.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[-Sum[x^i/i!, {i, 1, k}]], {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, n! SeriesCoefficient[Exp[1 - Exp[x] Gamma[k + 1, x]/Gamma[k + 1]], {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

E.g.f. of column k: exp(-Sum_{j=1..k} x^j/j!).
Previous Showing 11-19 of 19 results.