cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A279113 Number of non-equivalent ways to place 4 non-attacking kings on an n X n board.

Original entry on oeis.org

0, 0, 1, 14, 277, 2154, 10855, 39926, 120961, 315150, 737089, 1577406, 3150841, 5934034, 10651567, 18332614, 30452605, 49011606, 76753681, 117268590, 175315789, 256949306, 369978631, 524114454, 731604457, 1007394974, 1369985905, 1841600286, 2449309201, 3225197730
Offset: 1

Views

Author

Heinrich Ludwig, Dec 07 2016

Keywords

Comments

Rotations and reflections of placements are not counted. If they are to be counted, see A061997.

Examples

			There is 1 way to place 4 non-attacking kings on a 3 X 3 board:
   K.K
   ...
   K.K
		

Crossrefs

Cf. A061997, A279111 (2 kings), A279112 (3 kings), A279114 (5 kings), A279115 (6 kings), A279116 (7 kings), A279117, A236679.

Programs

  • Mathematica
    Table[Boole[n > 2] (n^8 - 54 n^6 + 72 n^5 + 1024 n^4 - 2640 n^3 - 4928 n^2 + 21888 n - 17280 + Boole[OddQ@ n] (14 n^4 - 72 n^3 + 154 n^2 - 240 n - 51))/192, {n, 30}] (* or *)
    Rest@ CoefficientList[Series[x^3*(1 + 10 x + 222 x^2 + 1076 x^3 + 2721 x^4 + 2806 x^5 + 1078 x^6 - 924 x^7 - 639 x^8 + 202 x^9 + 236 x^10 - 40 x^11 - 35 x^12 + 6 x^13)/((1 - x)^9*(1 + x)^5), {x, 0, 30}], x] (* Michael De Vlieger, Dec 08 2016 *)
  • PARI
    concat(vector(2), Vec(x^3*(1 +10*x +222*x^2 +1076*x^3 +2721*x^4 +2806*x^5 +1078*x^6 -924*x^7 -639*x^8 +202*x^9 +236*x^10 -40*x^11 -35*x^12 +6*x^13) / ((1 -x)^9*(1 +x)^5) + O(x^40))) \\ Colin Barker, Dec 08 2016

Formula

a(n) = (n^8 - 54*n^6 + 72*n^5 + 1024*n^4 - 2640*n^3 - 4928*n^2 + 21888*n - 17280 + IF(MOD(n, 2) = 1, 14*n^4 - 72*n^3 + 154*n^2 - 240*n - 51))/192 for n>=3.
a(n) = 4*a(n-1) - a(n-2) - 16*a(n-3) + 19*a(n-4) + 20*a(n-5) - 45*a(n-6) + 45*a(n-8) - 20*a(n-9) - 19*a(n-10) + 16*a(n-11) + a(n-12) - 4*a(n-13) + a(n-14) for n>=17.
G.f.: x^3*(1 +10*x +222*x^2 +1076*x^3 +2721*x^4 +2806*x^5 +1078*x^6 -924*x^7 -639*x^8 +202*x^9 +236*x^10 -40*x^11 -35*x^12 +6*x^13) / ((1 -x)^9*(1 +x)^5). - Colin Barker, Dec 08 2016

A279114 Number of non-equivalent ways to place 5 non-attacking kings on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 273, 5335, 50021, 291171, 1263125, 4434783, 13355477, 35672426, 86686721, 194886975, 410820269, 819819261, 1561128613, 2853802623, 5033838173, 8602315716, 14291999441, 23150803815, 36654054741, 56841404455, 86496828245, 129363299967, 190419751685, 276205278030
Offset: 1

Views

Author

Heinrich Ludwig, Dec 08 2016

Keywords

Comments

Rotations and reflections of placements are not counted. If they are to be counted, see A061998.

Examples

			There are 273 non-equivalent ways to place 5 non-attacking kings on a 5 X 5 board, e.g., this one:
   K...K
   .....
   ..K..
   .....
   K...K
		

Crossrefs

Cf. A061998, A279111 (2 kings), A279112 (3 kings), A279113 (4 kings), A279115 (6 kings), A279116 (7 kings), A279117, A236679.

Programs

  • Magma
    [0,0,0] cat [(n^10 - 90*n^8 + 120*n^7 + 3115*n^6 - 7748*n^5 - 46050*n^4 + 173140*n^3 + 158584*n^2 - 1255952*n + 1252800 + (1/2-(-1)^n/2)*(52*n^5 - 305*n^4 + 180*n^3 + 320*n^2 + 3488*n - 375))/960 : n in [4..30]]; // Wesley Ivan Hurt, Dec 08 2016
  • Maple
    A279114:=n->(n^10 - 90*n^8 + 120*n^7 + 3115*n^6 - 7748*n^5 - 46050*n^4 + 173140*n^3 + 158584*n^2 - 1255952*n + 1252800 + (1/2-(-1)^n/2)*(52*n^5 - 305*n^4 + 180*n^3 + 320*n^2 + 3488*n - 375))/960: 0, 0, 0, seq(A279114(n), n=4..30); # Wesley Ivan Hurt, Dec 08 2016
  • Mathematica
    Join[{0, 0, 0}, Table[(n^10 - 90*n^8 + 120*n^7 + 3115*n^6 - 7748*n^5 - 46050*n^4 + 173140*n^3 + 158584*n^2 - 1255952*n + 1252800 + (1/2 - (-1)^n/2)*(52*n^5 - 305*n^4 + 180*n^3 + 320*n^2 + 3488*n - 375))/960, {n, 4, 30}]] (* Wesley Ivan Hurt, Dec 08 2016 *)
  • PARI
    concat(vector(4), Vec(x^5*(273 +3970*x +24438*x^2 +67866*x^3 +103134*x^4 +66494*x^5 -1418*x^6 -29015*x^7 -4247*x^8 +10650*x^9 +2718*x^10 -2696*x^11 -672*x^12 +382*x^13 +62*x^14 -19*x^15) / ((1 -x)^11*(1 +x)^6) + O(x^30))) \\ Colin Barker, Dec 08 2016
    

Formula

a(n) = (n^10 - 90*n^8 + 120*n^7 + 3115*n^6 - 7748*n^5 - 46050*n^4 + 173140*n^3 + 158584*n^2 - 1255952*n + 1252800 + (1/2-(-1)^n/2) * (52*n^5 - 305*n^4 + 180*n^3 + 320*n^2 + 3488*n - 375))/960 for n >= 4.
a(n) = 5*a(n-1) - 4*a(n-2) - 20*a(n-3) + 40*a(n-4) + 16*a(n-5) - 100*a(n-6) + 44*a(n-7) + 110*a(n-8) - 110*a(n-9) - 44*a(n-10) + 100*a(n-11) - 16*a(n-12) - 40*a(n-13) + 20*a(n-14) + 4*a(n-15) - 5*a(n-16) + a(n-17) for n >= 21.
G.f.: x^5*(273 +3970*x +24438*x^2 +67866*x^3 +103134*x^4 +66494*x^5 -1418*x^6 -29015*x^7 -4247*x^8 +10650*x^9 +2718*x^10 -2696*x^11 -672*x^12 +382*x^13 +62*x^14 -19*x^15) / ((1 -x)^11*(1 +x)^6). - Colin Barker, Dec 08 2016

A279115 Number of non-equivalent ways to place 6 non-attacking kings on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 143, 7855, 153311, 1505465, 9729830, 47235703, 186615092, 630338668, 1882894541, 5092130575, 12686490993, 29498296651, 64664954532, 134715649055, 268438970166, 514318521438, 951646716171, 1706721390223, 2976056379875, 5058962536429, 8402677784738, 13663807273607
Offset: 1

Views

Author

Heinrich Ludwig, Dec 09 2016

Keywords

Comments

Rotations and reflections of placements are not counted. If they are to be counted, see A172158.

Examples

			There are 143 non-equivalent ways to place 6 non-attacking kings on a 5 X 5 board, e.g., this one:
   K...K
   .....
   K...K
   .....
   K...K
		

Crossrefs

Cf. A172158, A279111 (2 kings), A279112 (3 kings), A279113 (4 kings), A279114 (5 kings), A279116 (7 kings), A279117, A236679.

Programs

  • PARI
    concat(vector(4), Vec(x^5*(143 +6997*x +107325*x^2 +651585*x^3 +2086471*x^4 +3732434*x^5 +3669293*x^6 +1297859*x^7 -708745*x^8 -592136*x^9 +247421*x^10 +258649*x^11 -53671*x^12 -77714*x^13 +4451*x^14 +14969*x^15 +1018*x^16 -1741*x^17 -234*x^18 +106*x^19) / ((1 -x)^13*(1 +x)^7) + O(x^30))) \\ Colin Barker, Dec 09 2016

Formula

a(n) = (n^12 - 135*n^10 + 180*n^9 + 7465*n^8 - 18840*n^7 - 202468*n^6 + 749880*n^5 + 2446764*n^4 - 13439400*n^3 - 3570352*n^2 + 89413920*n - 107694720 + IF(MOD(n, 2) = 1, 122*n^6 - 1020*n^5 + 1955*n^4 + 840*n^3 + 5753*n^2 - 42840*n + 132975))/5760 for n>=5.
a(n) = 6*a(n-1) - 8*a(n-2) - 22*a(n-3) + 69*a(n-4) - 8*a(n-5) - 176*a(n-6) + 168*a(n-7) + 182*a(n-8) - 364*a(n-9) + 364*a(n-11) - 182*a(n-12) - 168*a(n-13) + 176*a(n-14) + 8*a(n-15) - 69*a(n-16) + 22*a(n-17) + 8*a(n-18) - 6*a(n-19) + a(n-20) for n>=25.
G.f.: x^5*(143 +6997*x +107325*x^2 +651585*x^3 +2086471*x^4 +3732434*x^5 +3669293*x^6 +1297859*x^7 -708745*x^8 -592136*x^9 +247421*x^10 +258649*x^11 -53671*x^12 -77714*x^13 +4451*x^14 +14969*x^15 +1018*x^16 -1741*x^17 -234*x^18 +106*x^19) / ((1 -x)^13*(1 +x)^7). - Colin Barker, Dec 09 2016

A279116 Number of non-equivalent ways to place 7 non-attacking kings on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 39, 6472, 311552, 5576682, 56289710, 389130774, 2059061646, 8924241327, 33134160010, 108698226956, 322211640480
Offset: 1

Views

Author

Heinrich Ludwig, Dec 10 2016

Keywords

Comments

Rotations and reflections of placements are not counted. If they are to be counted, see A194788.

Examples

			There are 39 non-equivalent ways to place 7 non-attacking kings on a 5 X 5 board, e.g., this one:
   K...K
   .....
   K.K.K
   .....
   K...K
		

Crossrefs

Cf. A194788, A279111 (2 kings), A279112 (3 kings), A279113 (4 kings), A279114 (5 kings), A279115 (6 kings), A279117, A236679.

A279117 Number of non-equivalent ways to place n non-attacking kings on an n X n board.

Original entry on oeis.org

1, 0, 2, 14, 273, 7855, 311552, 14895797, 831959075, 52959962415
Offset: 1

Views

Author

Heinrich Ludwig, Dec 10 2016

Keywords

Comments

Rotations and reflections of placements are not counted. If they are to be counted, see A201513.

Examples

			There are 14 non-equivalent ways to place 4 non-attacking kings on a 4 X 4 board, e.g., this one:
   K..K
   ....
   ....
   K..K
		

Crossrefs

Cf. A201513, A279111 (2 kings), A279112 (3 kings), A279113 (4 kings), A279114 (5 kings), A279115 (6 kings), A279116 (7 kings), A236679.

A286443 Irregular triangle read by rows: T(n, k) = number of non-equivalent ways to tile an n X n X n triangular area with k 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-4*k) of 1 X 1 X 1 tiles.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 3, 2, 1, 1, 4, 10, 14, 6, 1, 6, 32, 97, 142, 105, 46, 14, 3, 1, 1, 8, 70, 398, 1280, 2386, 2574, 1569, 524, 87, 3, 1, 11, 143, 1290, 7301, 26471, 62067, 94423, 93358, 60287, 25881, 7697, 1678, 281, 40, 5, 1, 1, 13, 252, 3366, 29603, 176591, 728868
Offset: 1

Views

Author

Heinrich Ludwig, May 16 2017

Keywords

Comments

The triangle T(n, k) is irregularly shaped: For n >= 4: 0 <= k <= n^2/4 if n is even, 0 <= k <= (n^2 -9)/4 if n is odd. First row corresponds to n = 1.
Rotations and reflections of tilings are not counted. If they are to be counted, see A286436. Tiles of the same size are indistinguishable.
For an analogous problem concerning square tiles, see A236679.

Examples

			The triangle begins with T(1, 0)
   1;
   1,    1;
   1,    1;
   1,    3,    3,    2,    1;
   1,    4,   10,   14,    6;
   1,    6,   32,   97,  142,  105,   46,   14,    3,    1;
   1,    8,   70,  398, 1280, 2386, 2574, 1569,  524,   87,    3;
T(4, 3) = 2 because there are 2 non-equivalent ways to tile an area of size 4X4X4 with 3 tiles of size 2X2X2 and fill up the rest with tiles of size 1X1X1.
		

Crossrefs

A275869 Number of nonequivalent ways to place k>=0 nonattacking kings on an n X n board.

Original entry on oeis.org

2, 2, 11, 51, 922, 25618, 1597350, 169413040, 33716225195, 11838480390673, 7588965091313449, 8705702554970941096, 18079208010076976255573, 67519585404524909086260614, 455193583190737164106702088892, 5527752160260327852724215089473548
Offset: 1

Views

Author

Heinrich Ludwig, Dec 11 2016

Keywords

Comments

Also number of nonequivalent ways to tile an n+1 X n+1 square with 1 X 1 and 2 X 2 tiles.
Also row sum of triangle A236679.
Rotations and reflections of a placement are not counted. If they are to be counted, see A063443.

Crossrefs

Extensions

a(10)-a(16) from Andrew Howroyd, May 30 2017

A319096 Number of nonequivalent ways to place n^2 nonattacking kings on a 2n X 2n chessboard under all symmetry operations of the square.

Original entry on oeis.org

1, 14, 459, 35312, 4072108, 638653285, 128441726634, 31872148398195, 9490641145219266, 3321018871480028710
Offset: 1

Views

Author

Anton Nikonov, Dec 21 2018

Keywords

Comments

A maximum of n^2 nonattacking kings may be placed on a 2n X 2n chessboard.

Examples

			For n = 2 there are a(2) = 14 distinct solutions from 79 that will not be repeated at all possible turns and reflections.
------------
1.                  2.
_________________   _________________
| * |   | * |   |   | * |   | * |   |
|   |   |   |   |   |   |   |   |   |
| * |   | * |   |   | * |   |   | * |
|   |   |   |   |   |   |   |   |   |
------------
3.                  4.
_________________   _________________
| * |   | * |   |   | * |   | * |   |
|   |   |   |   |   |   |   |   |   |
| * |   |   |   |   |   | * |   | * |
|   |   |   | * |   |   |   |   |   |
------------
5.                  6.
_________________   _________________
| * |   | * |   |   | * |   | * |   |
|   |   |   |   |   |   |   |   |   |
|   | * |   |   |   |   |   | * |   |
|   |   |   | * |   | * |   |   |   |
------------
7.                  8.
_________________   _________________
| * |   | * |   |   | * |   | * |   |
|   |   |   |   |   |   |   |   |   |
|   |   |   | * |   |   |   |   |   |
| * |   |   |   |   | * |   | * |   |
------------
9.                  10.
_________________   _________________
| * |   | * |   |   | * |   | * |   |
|   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   | * |
| * |   |   | * |   |   | * |   |   |
------------
11.                 12.
_________________   _________________
| * |   | * |   |   | * |   |   | * |
|   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   | * |   |   |
|   | * |   | * |   |   |   |   | * |
------------
13.                 14.
_________________   _________________
| * |   |   | * |   |   | * |   |   |
|   |   |   |   |   |   |   |   | * |
|   |   |   |   |   | * |   |   |   |
| * |   |   | * |   |   |   | * |   |
------------
		

Crossrefs

Cf. A018807 (rotations and reflections considered distinct).
Cf. A137432 (on cylindrical chessboard).

Formula

a(n) = A236679(2n+1, n^2).

Extensions

a(4)-a(10) from Andrew Howroyd, Dec 21 2018

A362259 Maximum number of ways in which a set of integer-sided squares can tile an n X n square, up to rotations and reflections.

Original entry on oeis.org

1, 1, 1, 1, 4, 20, 277, 7855, 487662
Offset: 0

Views

Author

Pontus von Brömssen, Apr 15 2023

Keywords

Crossrefs

Main diagonal of A362258.
Cf. A224239, A236679, A361222 (rectangular pieces), A362143.

Formula

a(n) >= A362143(n)/8.
Previous Showing 11-19 of 19 results.