A279113
Number of non-equivalent ways to place 4 non-attacking kings on an n X n board.
Original entry on oeis.org
0, 0, 1, 14, 277, 2154, 10855, 39926, 120961, 315150, 737089, 1577406, 3150841, 5934034, 10651567, 18332614, 30452605, 49011606, 76753681, 117268590, 175315789, 256949306, 369978631, 524114454, 731604457, 1007394974, 1369985905, 1841600286, 2449309201, 3225197730
Offset: 1
There is 1 way to place 4 non-attacking kings on a 3 X 3 board:
K.K
...
K.K
- Heinrich Ludwig, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-1,-16,19,20,-45,0,45,-20,-19,16,1,-4,1)
-
Table[Boole[n > 2] (n^8 - 54 n^6 + 72 n^5 + 1024 n^4 - 2640 n^3 - 4928 n^2 + 21888 n - 17280 + Boole[OddQ@ n] (14 n^4 - 72 n^3 + 154 n^2 - 240 n - 51))/192, {n, 30}] (* or *)
Rest@ CoefficientList[Series[x^3*(1 + 10 x + 222 x^2 + 1076 x^3 + 2721 x^4 + 2806 x^5 + 1078 x^6 - 924 x^7 - 639 x^8 + 202 x^9 + 236 x^10 - 40 x^11 - 35 x^12 + 6 x^13)/((1 - x)^9*(1 + x)^5), {x, 0, 30}], x] (* Michael De Vlieger, Dec 08 2016 *)
-
concat(vector(2), Vec(x^3*(1 +10*x +222*x^2 +1076*x^3 +2721*x^4 +2806*x^5 +1078*x^6 -924*x^7 -639*x^8 +202*x^9 +236*x^10 -40*x^11 -35*x^12 +6*x^13) / ((1 -x)^9*(1 +x)^5) + O(x^40))) \\ Colin Barker, Dec 08 2016
A279114
Number of non-equivalent ways to place 5 non-attacking kings on an n X n board.
Original entry on oeis.org
0, 0, 0, 0, 273, 5335, 50021, 291171, 1263125, 4434783, 13355477, 35672426, 86686721, 194886975, 410820269, 819819261, 1561128613, 2853802623, 5033838173, 8602315716, 14291999441, 23150803815, 36654054741, 56841404455, 86496828245, 129363299967, 190419751685, 276205278030
Offset: 1
There are 273 non-equivalent ways to place 5 non-attacking kings on a 5 X 5 board, e.g., this one:
K...K
.....
..K..
.....
K...K
- Heinrich Ludwig, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-4,-20,40,16,-100,44,110,-110,-44,100,-16,-40,20,4,-5,1).
-
[0,0,0] cat [(n^10 - 90*n^8 + 120*n^7 + 3115*n^6 - 7748*n^5 - 46050*n^4 + 173140*n^3 + 158584*n^2 - 1255952*n + 1252800 + (1/2-(-1)^n/2)*(52*n^5 - 305*n^4 + 180*n^3 + 320*n^2 + 3488*n - 375))/960 : n in [4..30]]; // Wesley Ivan Hurt, Dec 08 2016
-
A279114:=n->(n^10 - 90*n^8 + 120*n^7 + 3115*n^6 - 7748*n^5 - 46050*n^4 + 173140*n^3 + 158584*n^2 - 1255952*n + 1252800 + (1/2-(-1)^n/2)*(52*n^5 - 305*n^4 + 180*n^3 + 320*n^2 + 3488*n - 375))/960: 0, 0, 0, seq(A279114(n), n=4..30); # Wesley Ivan Hurt, Dec 08 2016
-
Join[{0, 0, 0}, Table[(n^10 - 90*n^8 + 120*n^7 + 3115*n^6 - 7748*n^5 - 46050*n^4 + 173140*n^3 + 158584*n^2 - 1255952*n + 1252800 + (1/2 - (-1)^n/2)*(52*n^5 - 305*n^4 + 180*n^3 + 320*n^2 + 3488*n - 375))/960, {n, 4, 30}]] (* Wesley Ivan Hurt, Dec 08 2016 *)
-
concat(vector(4), Vec(x^5*(273 +3970*x +24438*x^2 +67866*x^3 +103134*x^4 +66494*x^5 -1418*x^6 -29015*x^7 -4247*x^8 +10650*x^9 +2718*x^10 -2696*x^11 -672*x^12 +382*x^13 +62*x^14 -19*x^15) / ((1 -x)^11*(1 +x)^6) + O(x^30))) \\ Colin Barker, Dec 08 2016
A279115
Number of non-equivalent ways to place 6 non-attacking kings on an n X n board.
Original entry on oeis.org
0, 0, 0, 0, 143, 7855, 153311, 1505465, 9729830, 47235703, 186615092, 630338668, 1882894541, 5092130575, 12686490993, 29498296651, 64664954532, 134715649055, 268438970166, 514318521438, 951646716171, 1706721390223, 2976056379875, 5058962536429, 8402677784738, 13663807273607
Offset: 1
There are 143 non-equivalent ways to place 6 non-attacking kings on a 5 X 5 board, e.g., this one:
K...K
.....
K...K
.....
K...K
- Heinrich Ludwig, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-8,-22,69,-8,-176,168,182,-364,0,364,-182,-168,176,8,-69,22,8,-6,1).
-
concat(vector(4), Vec(x^5*(143 +6997*x +107325*x^2 +651585*x^3 +2086471*x^4 +3732434*x^5 +3669293*x^6 +1297859*x^7 -708745*x^8 -592136*x^9 +247421*x^10 +258649*x^11 -53671*x^12 -77714*x^13 +4451*x^14 +14969*x^15 +1018*x^16 -1741*x^17 -234*x^18 +106*x^19) / ((1 -x)^13*(1 +x)^7) + O(x^30))) \\ Colin Barker, Dec 09 2016
A279116
Number of non-equivalent ways to place 7 non-attacking kings on an n X n board.
Original entry on oeis.org
0, 0, 0, 0, 39, 6472, 311552, 5576682, 56289710, 389130774, 2059061646, 8924241327, 33134160010, 108698226956, 322211640480
Offset: 1
There are 39 non-equivalent ways to place 7 non-attacking kings on a 5 X 5 board, e.g., this one:
K...K
.....
K.K.K
.....
K...K
A279117
Number of non-equivalent ways to place n non-attacking kings on an n X n board.
Original entry on oeis.org
1, 0, 2, 14, 273, 7855, 311552, 14895797, 831959075, 52959962415
Offset: 1
There are 14 non-equivalent ways to place 4 non-attacking kings on a 4 X 4 board, e.g., this one:
K..K
....
....
K..K
A286443
Irregular triangle read by rows: T(n, k) = number of non-equivalent ways to tile an n X n X n triangular area with k 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-4*k) of 1 X 1 X 1 tiles.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 3, 3, 2, 1, 1, 4, 10, 14, 6, 1, 6, 32, 97, 142, 105, 46, 14, 3, 1, 1, 8, 70, 398, 1280, 2386, 2574, 1569, 524, 87, 3, 1, 11, 143, 1290, 7301, 26471, 62067, 94423, 93358, 60287, 25881, 7697, 1678, 281, 40, 5, 1, 1, 13, 252, 3366, 29603, 176591, 728868
Offset: 1
The triangle begins with T(1, 0)
1;
1, 1;
1, 1;
1, 3, 3, 2, 1;
1, 4, 10, 14, 6;
1, 6, 32, 97, 142, 105, 46, 14, 3, 1;
1, 8, 70, 398, 1280, 2386, 2574, 1569, 524, 87, 3;
T(4, 3) = 2 because there are 2 non-equivalent ways to tile an area of size 4X4X4 with 3 tiles of size 2X2X2 and fill up the rest with tiles of size 1X1X1.
A275869
Number of nonequivalent ways to place k>=0 nonattacking kings on an n X n board.
Original entry on oeis.org
2, 2, 11, 51, 922, 25618, 1597350, 169413040, 33716225195, 11838480390673, 7588965091313449, 8705702554970941096, 18079208010076976255573, 67519585404524909086260614, 455193583190737164106702088892, 5527752160260327852724215089473548
Offset: 1
A319096
Number of nonequivalent ways to place n^2 nonattacking kings on a 2n X 2n chessboard under all symmetry operations of the square.
Original entry on oeis.org
1, 14, 459, 35312, 4072108, 638653285, 128441726634, 31872148398195, 9490641145219266, 3321018871480028710
Offset: 1
For n = 2 there are a(2) = 14 distinct solutions from 79 that will not be repeated at all possible turns and reflections.
------------
1. 2.
_________________ _________________
| * | | * | | | * | | * | |
| | | | | | | | | |
| * | | * | | | * | | | * |
| | | | | | | | | |
------------
3. 4.
_________________ _________________
| * | | * | | | * | | * | |
| | | | | | | | | |
| * | | | | | | * | | * |
| | | | * | | | | | |
------------
5. 6.
_________________ _________________
| * | | * | | | * | | * | |
| | | | | | | | | |
| | * | | | | | | * | |
| | | | * | | * | | | |
------------
7. 8.
_________________ _________________
| * | | * | | | * | | * | |
| | | | | | | | | |
| | | | * | | | | | |
| * | | | | | * | | * | |
------------
9. 10.
_________________ _________________
| * | | * | | | * | | * | |
| | | | | | | | | |
| | | | | | | | | * |
| * | | | * | | | * | | |
------------
11. 12.
_________________ _________________
| * | | * | | | * | | | * |
| | | | | | | | | |
| | | | | | | * | | |
| | * | | * | | | | | * |
------------
13. 14.
_________________ _________________
| * | | | * | | | * | | |
| | | | | | | | | * |
| | | | | | * | | | |
| * | | | * | | | | * | |
------------
Cf.
A018807 (rotations and reflections considered distinct).
Cf.
A137432 (on cylindrical chessboard).
A362259
Maximum number of ways in which a set of integer-sided squares can tile an n X n square, up to rotations and reflections.
Original entry on oeis.org
1, 1, 1, 1, 4, 20, 277, 7855, 487662
Offset: 0
Comments