cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 48 results. Next

A345919 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum < 0.

Original entry on oeis.org

6, 12, 20, 24, 25, 27, 30, 40, 48, 49, 51, 54, 60, 72, 80, 81, 83, 86, 92, 96, 97, 98, 99, 101, 102, 103, 106, 108, 109, 111, 116, 120, 121, 123, 126, 144, 160, 161, 163, 166, 172, 184, 192, 193, 194, 195, 197, 198, 199, 202, 204, 205, 207, 212, 216, 217, 219
Offset: 1

Views

Author

Gus Wiseman, Jul 09 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms and the corresponding compositions:
      6: (1,2)         81: (2,4,1)
     12: (1,3)         83: (2,3,1,1)
     20: (2,3)         86: (2,2,1,2)
     24: (1,4)         92: (2,1,1,3)
     25: (1,3,1)       96: (1,6)
     27: (1,2,1,1)     97: (1,5,1)
     30: (1,1,1,2)     98: (1,4,2)
     40: (2,4)         99: (1,4,1,1)
     48: (1,5)        101: (1,3,2,1)
     49: (1,4,1)      102: (1,3,1,2)
     51: (1,3,1,1)    103: (1,3,1,1,1)
     54: (1,2,1,2)    106: (1,2,2,2)
     60: (1,1,1,3)    108: (1,2,1,3)
     72: (3,4)        109: (1,2,1,2,1)
     80: (2,5)        111: (1,2,1,1,1,1)
		

Crossrefs

The version for Heinz numbers of partitions is A119899.
These are the positions of terms < 0 in A124754.
These compositions are counted by A294175 (even bisection: A008549).
The complement is A345913.
The weak (k <= 0) version is A345915.
The opposite (k < 0) version is A345917.
The version for reversed alternating sum is A345920.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[stc[#]]<0&]

A345922 Numbers k such that the k-th composition in standard order (row k of A066099) has reverse-alternating sum 2.

Original entry on oeis.org

2, 11, 12, 14, 37, 40, 42, 47, 51, 52, 54, 59, 60, 62, 137, 144, 146, 151, 157, 163, 164, 166, 171, 172, 174, 181, 184, 186, 191, 197, 200, 202, 207, 211, 212, 214, 219, 220, 222, 229, 232, 234, 239, 243, 244, 246, 251, 252, 254, 529, 544, 546, 551, 557, 569
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2021

Keywords

Comments

The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms and the corresponding compositions:
      2: (2)            144: (3,5)
     11: (2,1,1)        146: (3,3,2)
     12: (1,3)          151: (3,2,1,1,1)
     14: (1,1,2)        157: (3,1,1,2,1)
     37: (3,2,1)        163: (2,4,1,1)
     40: (2,4)          164: (2,3,3)
     42: (2,2,2)        166: (2,3,1,2)
     47: (2,1,1,1,1)    171: (2,2,2,1,1)
     51: (1,3,1,1)      172: (2,2,1,3)
     52: (1,2,3)        174: (2,2,1,1,2)
     54: (1,2,1,2)      181: (2,1,2,2,1)
     59: (1,1,2,1,1)    184: (2,1,1,4)
     60: (1,1,1,3)      186: (2,1,1,2,2)
     62: (1,1,1,1,2)    191: (2,1,1,1,1,1,1)
    137: (4,3,1)        197: (1,4,2,1)
		

Crossrefs

These compositions are counted by A088218.
The case of partitions is counted by A120452.
These are the positions of 2's in A344618.
The opposite (negative 2) version is A345923.
The version for unreversed alternating sum is A345925.
The version for Heinz numbers of partitions is A345961.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[0,100],sats[stc[#]]==2&]

A345923 Numbers k such that the k-th composition in standard order (row k of A066099) has reverse-alternating sum -2.

Original entry on oeis.org

9, 34, 39, 45, 49, 57, 132, 139, 142, 149, 154, 159, 161, 169, 178, 183, 189, 194, 199, 205, 209, 217, 226, 231, 237, 241, 249, 520, 531, 534, 540, 549, 554, 559, 564, 571, 574, 577, 585, 594, 599, 605, 612, 619, 622, 629, 634, 639, 642, 647, 653, 657, 665
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2021

Keywords

Comments

The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms and the corresponding compositions:
      9: (3,1)            183: (2,1,2,1,1,1)
     34: (4,2)            189: (2,1,1,1,2,1)
     39: (3,1,1,1)        194: (1,5,2)
     45: (2,1,2,1)        199: (1,4,1,1,1)
     49: (1,4,1)          205: (1,3,1,2,1)
     57: (1,1,3,1)        209: (1,2,4,1)
    132: (5,3)            217: (1,2,1,3,1)
    139: (4,2,1,1)        226: (1,1,4,2)
    142: (4,1,1,2)        231: (1,1,3,1,1,1)
    149: (3,2,2,1)        237: (1,1,2,1,2,1)
    154: (3,1,2,2)        241: (1,1,1,4,1)
    159: (3,1,1,1,1,1)    249: (1,1,1,1,3,1)
    161: (2,5,1)          520: (6,4)
    169: (2,2,3,1)        531: (5,3,1,1)
    178: (2,1,3,2)        534: (5,2,1,2)
		

Crossrefs

These compositions are counted by A088218.
These are the positions of 2's in A344618.
The case of partitions of 2n is A344741.
The opposite (negative 2) version is A345923.
The version for unreversed alternating sum is A345925.
The version for Heinz numbers of partitions is A345961.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions of 2n with reverse-alternating sum 2.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[0,100],sats[stc[#]]==-2&]

A340601 Number of integer partitions of n of even rank.

Original entry on oeis.org

1, 1, 0, 3, 1, 5, 3, 11, 8, 18, 16, 34, 33, 57, 59, 98, 105, 159, 179, 262, 297, 414, 478, 653, 761, 1008, 1184, 1544, 1818, 2327, 2750, 3480, 4113, 5137, 6078, 7527, 8899, 10917, 12897, 15715, 18538, 22431, 26430, 31805, 37403, 44766, 52556, 62620, 73379
Offset: 0

Views

Author

Gus Wiseman, Jan 21 2021

Keywords

Comments

The Dyson rank of a nonempty partition is its maximum part minus its number of parts. For this sequence, the rank of an empty partition is 0.

Examples

			The a(1) = 1 through a(9) = 18 partitions (empty column indicated by dot):
  (1)  .  (3)    (22)  (5)      (42)    (7)        (44)      (9)
          (21)         (41)     (321)   (43)       (62)      (63)
          (111)        (311)    (2211)  (61)       (332)     (81)
                       (2111)           (322)      (521)     (333)
                       (11111)          (331)      (2222)    (522)
                                        (511)      (4211)    (531)
                                        (2221)     (32111)   (711)
                                        (4111)     (221111)  (4221)
                                        (31111)              (4311)
                                        (211111)             (6111)
                                        (1111111)            (32211)
                                                             (33111)
                                                             (51111)
                                                             (222111)
                                                             (411111)
                                                             (3111111)
                                                             (21111111)
                                                             (111111111)
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The positive case is A101708 (A340605).
The Heinz numbers of these partitions are A340602.
The odd version is A340692 (A340603).
- Rank -
A047993 counts partitions of rank 0 (A106529).
A072233 counts partitions by sum and length.
A101198 counts partitions of rank 1 (A325233).
A101707 counts partitions of odd positive rank (A340604).
A101708 counts partitions of even positive rank (A340605).
A257541 gives the rank of the partition with Heinz number n.
A340653 counts factorizations of rank 0.
- Even -
A024430 counts set partitions of even length.
A027187 counts partitions of even length (A028260).
A027187 (also) counts partitions of even maximum (A244990).
A034008 counts compositions of even length.
A035363 counts partitions into even parts (A066207).
A052841 counts ordered set partitions of even length.
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A236913 counts even-length partitions of even numbers (A340784).
A339846 counts factorizations of even length.

Programs

  • Maple
    b:= proc(n, i, r) option remember; `if`(n=0, 1-max(0, r),
          `if`(i<1, 0, b(n, i-1, r) +b(n-i, min(n-i, i), 1-
          `if`(r<0, irem(i, 2), r))))
        end:
    a:= n-> b(n$2, -1):
    seq(a(n), n=0..55);  # Alois P. Heinz, Jan 22 2021
  • Mathematica
    Table[If[n==0,1,Length[Select[IntegerPartitions[n],EvenQ[Max[#]-Length[#]]&]]],{n,0,30}]
    (* Second program: *)
    b[n_, i_, r_] := b[n, i, r] = If[n == 0, 1 - Max[0, r], If[i < 1, 0, b[n, i - 1, r] + b[n - i, Min[n - i, i], 1 - If[r < 0, Mod[i, 2], r]]]];
    a[n_] := b[n, n, -1];
    a /@ Range[0, 55] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
  • PARI
    p_q(k) = {prod(j=1, k, 1-q^j); }
    GB_q(N, M)= {if(N>=0 && M>=0,  p_q(N+M)/(p_q(M)*p_q(N)), 0 ); }
    A_q(N) = {my(q='q+O('q^N), g=1+sum(i=1,N, sum(j=1,N/i, q^(i*j) * ( ((1/2)*(1+(-1)^(i+j))) + sum(k=1,N-(i*j), ((q^k)*GB_q(k,i-2)) * ((1/2)*(1+(-1)^(i+j+k)))))))); Vec(g)}
    A_q(50) \\ John Tyler Rascoe, Apr 15 2024

Formula

G.f.: 1 + Sum_{i, j>0} q^(i*j) * ( (1+(-1)^(i+j))/2 + Sum_{k>0} q^k * q_binomial(k,i-2) * (1+(-1)^(i+j+k))/2 ). - John Tyler Rascoe, Apr 15 2024
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)). - Vaclav Kotesovec, Apr 17 2024

A345918 Numbers k such that the k-th composition in standard order (row k of A066099) has reverse-alternating sum > 0.

Original entry on oeis.org

1, 2, 4, 6, 7, 8, 11, 12, 14, 16, 19, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 35, 37, 38, 40, 42, 44, 47, 48, 51, 52, 54, 56, 59, 60, 62, 64, 67, 69, 70, 72, 73, 74, 76, 79, 80, 82, 83, 84, 86, 87, 88, 91, 92, 93, 94, 96, 99, 100, 101, 102, 104, 106, 107, 108
Offset: 1

Views

Author

Gus Wiseman, Jul 09 2021

Keywords

Comments

The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms and the corresponding compositions:
     1: (1)        26: (1,2,2)        52: (1,2,3)
     2: (2)        27: (1,2,1,1)      54: (1,2,1,2)
     4: (3)        28: (1,1,3)        56: (1,1,4)
     6: (1,2)      30: (1,1,1,2)      59: (1,1,2,1,1)
     7: (1,1,1)    31: (1,1,1,1,1)    60: (1,1,1,3)
     8: (4)        32: (6)            62: (1,1,1,1,2)
    11: (2,1,1)    35: (4,1,1)        64: (7)
    12: (1,3)      37: (3,2,1)        67: (5,1,1)
    14: (1,1,2)    38: (3,1,2)        69: (4,2,1)
    16: (5)        40: (2,4)          70: (4,1,2)
    19: (3,1,1)    42: (2,2,2)        72: (3,4)
    20: (2,3)      44: (2,1,3)        73: (3,3,1)
    21: (2,2,1)    47: (2,1,1,1,1)    74: (3,2,2)
    22: (2,1,2)    48: (1,5)          76: (3,1,3)
    24: (1,4)      51: (1,3,1,1)      79: (3,1,1,1,1)
		

Crossrefs

The version for prime indices is A000037.
The version for Heinz numbers of partitions is A026424, counted by A027193.
These compositions are counted by A027306.
These are the positions of terms > 0 in A344618.
The weak (k >= 0) version is A345914.
The version for unreversed alternating sum is A345917.
The opposite (k < 0) version is A345920.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[0,100],sats[stc[#]]>0&]

A345920 Numbers k such that the k-th composition in standard order (row k of A066099) has reverse-alternating sum < 0.

Original entry on oeis.org

5, 9, 17, 18, 23, 25, 29, 33, 34, 39, 45, 49, 57, 65, 66, 68, 71, 75, 77, 78, 81, 85, 89, 90, 95, 97, 98, 103, 105, 109, 113, 114, 119, 121, 125, 129, 130, 132, 135, 139, 141, 142, 149, 153, 154, 159, 161, 169, 177, 178, 183, 189, 193, 194, 199, 205, 209, 217
Offset: 1

Views

Author

Gus Wiseman, Jul 09 2021

Keywords

Comments

The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms and the corresponding compositions:
      5: (2,1)         68: (4,3)
      9: (3,1)         71: (4,1,1,1)
     17: (4,1)         75: (3,2,1,1)
     18: (3,2)         77: (3,1,2,1)
     23: (2,1,1,1)     78: (3,1,1,2)
     25: (1,3,1)       81: (2,4,1)
     29: (1,1,2,1)     85: (2,2,2,1)
     33: (5,1)         89: (2,1,3,1)
     34: (4,2)         90: (2,1,2,2)
     39: (3,1,1,1)     95: (2,1,1,1,1,1)
     45: (2,1,2,1)     97: (1,5,1)
     49: (1,4,1)       98: (1,4,2)
     57: (1,1,3,1)    103: (1,3,1,1,1)
     65: (6,1)        105: (1,2,3,1)
     66: (5,2)        109: (1,2,1,2,1)
		

Crossrefs

The version for prime indices is {}.
The version for Heinz numbers of partitions is A119899.
These compositions are counted by A294175 (even bisection: A008549).
These are the positions of terms < 0 in A344618.
The complement is A345914.
The weak (k <= 0) version is A345916.
The opposite (k > 0) version is A345918.
The version for unreversed alternating sum is A345919.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[0,100],sats[stc[#]]<0&]

A345921 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum != 0.

Original entry on oeis.org

1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 42, 44, 45, 47, 48, 49, 51, 52, 54, 56, 57, 59, 60, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
Also numbers k such that the k-th composition in standard order has reverse-alternating sum != 0.

Examples

			The initial terms and the corresponding compositions:
     1: (1)        20: (2,3)          35: (4,1,1)
     2: (2)        21: (2,2,1)        37: (3,2,1)
     4: (3)        22: (2,1,2)        38: (3,1,2)
     5: (2,1)      23: (2,1,1,1)      39: (3,1,1,1)
     6: (1,2)      24: (1,4)          40: (2,4)
     7: (1,1,1)    25: (1,3,1)        42: (2,2,2)
     8: (4)        26: (1,2,2)        44: (2,1,3)
     9: (3,1)      27: (1,2,1,1)      45: (2,1,2,1)
    11: (2,1,1)    28: (1,1,3)        47: (2,1,1,1,1)
    12: (1,3)      29: (1,1,2,1)      48: (1,5)
    14: (1,1,2)    30: (1,1,1,2)      49: (1,4,1)
    16: (5)        31: (1,1,1,1,1)    51: (1,3,1,1)
    17: (4,1)      32: (6)            52: (1,2,3)
    18: (3,2)      33: (5,1)          54: (1,2,1,2)
    19: (3,1,1)    34: (4,2)          56: (1,1,4)
		

Crossrefs

The version for Heinz numbers of partitions is A000037.
These compositions are counted by A058622.
These are the positions of terms != 0 in A124754.
The complement (k = 0) is A344619.
The positive (k > 0) version is A345917 (reverse: A345918).
The negative (k < 0) version is A345919 (reverse: A345920).
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[stc[#]]!=0&]

A174725 a(n) = (A074206(n) + A008683(n))/2.

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 0, 2, 1, 2, 0, 4, 0, 2, 2, 4, 0, 4, 0, 4, 2, 2, 0, 10, 1, 2, 2, 4, 0, 6, 0, 8, 2, 2, 2, 13, 0, 2, 2, 10, 0, 6, 0, 4, 4, 2, 0, 24, 1, 4, 2, 4, 0, 10, 2, 10, 2, 2, 0, 22, 0, 2, 4, 16, 2, 6, 0, 4, 2, 6, 0, 38, 0, 2, 4, 4, 2
Offset: 1

Views

Author

Mats Granvik, Mar 28 2010

Keywords

Comments

From Mats Granvik, May 25 2017: (Start)
A074206(n) = A002033(n-1) = a(n) + A174726(n).
A008683(n) = a(n) - A174726(n).
Let m = size of matrix a matrix T, and let T be defined as follows:
T(n,k) = if m = 1 then 1 else if mod(n, k) = 0 then if and(n = k, n = m) then 0 else 1 else if and(n = 1, k = m) then 1 else 0
a(n) is then the number of permutation matrices with a positive contribution in the determinant of matrix T. The determinant of T is equal to the Möbius function A008683, see Mathematica program below for how to compute the determinant.
A174726 is the number of permutation matrices with a negative contribution in the determinant of matrix T.
(End)
From Gus Wiseman, Jan 04 2021: (Start)
Also the number of ordered factorizations of n into an even number of factors > 1. The non-ordered case is A339846. For example, the a(n) factorizations for n = 12, 24, 30, 32, 36 are:
(2*6) (3*8) (5*6) (4*8) (4*9)
(3*4) (4*6) (6*5) (8*4) (6*6)
(4*3) (6*4) (10*3) (16*2) (9*4)
(6*2) (8*3) (15*2) (2*16) (12*3)
(12*2) (2*15) (2*2*2*4) (18*2)
(2*12) (3*10) (2*2*4*2) (2*18)
(2*2*2*3) (2*4*2*2) (3*12)
(2*2*3*2) (4*2*2*2) (2*2*3*3)
(2*3*2*2) (2*3*2*3)
(3*2*2*2) (2*3*3*2)
(3*2*2*3)
(3*2*3*2)
(3*3*2*2)
(End)

Crossrefs

The odd version is A174726.
The unordered version is A339846.
A001055 counts factorizations, with strict case A045778.
A058696 counts partitions of even numbers, ranked by A300061.
A074206 counts ordered factorizations, with strict case A254578.
A251683 counts ordered factorizations by product and length.
Other cases of even length:
- A024430 counts set partitions of even length.
- A027187 counts partitions of even length.
- A034008 counts compositions of even length.
- A052841 counts ordered set partitions of even length.
- A067661 counts strict partitions of even length.
- A332305 counts strict compositions of even length

Programs

  • Mathematica
    (* From Mats Granvik, May 25 2017: (Start) *)
    Clear[t, nn]; nn = 77; t[1, 1] = 1; t[n_, k_] := t[n, k] = If[k == 1, Sum[t[n, k + i], {i, 1, n - 1}], If[Mod[n, k] == 0, t[n/k, 1], 0], 0]; Monitor[Table[Sum[If[Mod[n, k] == 0, MoebiusMu[k]*t[n/k, 1], 0], {k, 1, 77}], {n, 1, nn}], n]
    (* The Möbius function as a determinant *) Table[Det[Table[Table[If[m == 1, 1, If[Mod[n, k] == 0, If[And[n == k, n == m], 0, 1], If[And[n == 1, k == m], 1, 0]]], {k, 1, m}], {n, 1, m}]], {m, 1, 42}]
    (* (End) *)
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[ordfacs[n],EvenQ@*Length]],{n,100}] (* Gus Wiseman, Jan 04 2021 *)

Formula

a(n) = (Mobius transform of a(n)) + (Mobius transform of A174726). - Mats Granvik, Apr 04 2010
From Mats Granvik, May 25 2017: (Start)
This sequence is the Moebius transform of A074206.
a(n) = (A074206(n) + A008683(n))/2.
(End)
G.f. A(x) satisfies: A(x) = x + Sum_{i>=2} Sum_{j>=2} A(x^(i*j)). - Ilya Gutkovskiy, May 11 2019

Extensions

References to A002033(n-1) changed to A074206(n) by Antti Karttunen, Nov 23 2024

A345914 Numbers k such that the k-th composition in standard order (row k of A066099) has reverse-alternating sum >= 0.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 35, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 67, 69, 70, 72, 73, 74, 76, 79, 80, 82, 83, 84, 86, 87, 88
Offset: 1

Views

Author

Gus Wiseman, Jul 04 2021

Keywords

Comments

The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
     0: ()           19: (3,1,1)        40: (2,4)
     1: (1)          20: (2,3)          41: (2,3,1)
     2: (2)          21: (2,2,1)        42: (2,2,2)
     3: (1,1)        22: (2,1,2)        43: (2,2,1,1)
     4: (3)          24: (1,4)          44: (2,1,3)
     6: (1,2)        26: (1,2,2)        46: (2,1,1,2)
     7: (1,1,1)      27: (1,2,1,1)      47: (2,1,1,1,1)
     8: (4)          28: (1,1,3)        48: (1,5)
    10: (2,2)        30: (1,1,1,2)      50: (1,3,2)
    11: (2,1,1)      31: (1,1,1,1,1)    51: (1,3,1,1)
    12: (1,3)        32: (6)            52: (1,2,3)
    13: (1,2,1)      35: (4,1,1)        53: (1,2,2,1)
    14: (1,1,2)      36: (3,3)          54: (1,2,1,2)
    15: (1,1,1,1)    37: (3,2,1)        55: (1,2,1,1,1)
    16: (5)          38: (3,1,2)        56: (1,1,4)
		

Crossrefs

The version for prime indices is A000027, counted by A000041.
These compositions are counted by A116406.
The case of non-Heinz numbers of partitions is A119899, counted by A344608.
The version for Heinz numbers of partitions is A344609, counted by A344607.
These are the positions of terms >= 0 in A344618.
The version for unreversed alternating sum is A345913.
The opposite (k <= 0) version is A345916.
The strict (k > 0) case is A345918.
The complement is A345920, counted by A294175.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[0,100],sats[stc[#]]>=0&]

A345915 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum <= 0.

Original entry on oeis.org

0, 3, 6, 10, 12, 13, 15, 20, 24, 25, 27, 30, 36, 40, 41, 43, 46, 48, 49, 50, 51, 53, 54, 55, 58, 60, 61, 63, 72, 80, 81, 83, 86, 92, 96, 97, 98, 99, 101, 102, 103, 106, 108, 109, 111, 116, 120, 121, 123, 126, 136, 144, 145, 147, 150, 156, 160, 161, 162, 163
Offset: 1

Views

Author

Gus Wiseman, Jul 08 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
     0: ()
     3: (1,1)
     6: (1,2)
    10: (2,2)
    12: (1,3)
    13: (1,2,1)
    15: (1,1,1,1)
    20: (2,3)
    24: (1,4)
    25: (1,3,1)
    27: (1,2,1,1)
    30: (1,1,1,2)
    36: (3,3)
    40: (2,4)
    41: (2,3,1)
		

Crossrefs

The version for Heinz numbers of partitions is A028260 (counted by A027187).
These compositions are counted by A058622.
These are the positions of terms <= 0 in A124754.
The reverse-alternating version is A345916.
The opposite (k >= 0) version is A345917.
The strictly negative (k < 0) version is A345919.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[stc[#]]<=0&]
Previous Showing 11-20 of 48 results. Next