cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A280307 Numbers m such that 7^m - 6^m is not squarefree, but 7^d - 6^d is squarefree for every proper divisor d of m.

Original entry on oeis.org

20, 26, 55, 68, 171, 258, 310
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 31 2016

Keywords

Comments

Numbers m such that 7^m - 6^m is not squarefree not divisible by any smaller number of the same form.
7^m - 6^m is nonsquarefree if and only if m is divisible by a term of this sequence. - Jon E. Schoenfield, Jan 01 2017
The smallest squares of 7^m - 6^m as defined above are 25, 169, 121, 289, 361, 1849, 961. - Robert Price, Mar 07 2017
a(8) >= 323. - Jinyuan Wang, May 15 2020
a(8) <= 381. 381, 406, 506, 610, 689, 979, 1027, 1081, 1332 are terms. - Chai Wah Wu, Jul 20 2020

Examples

			20 is in this sequence because 7^20 - 6^20 = 43242508113549025 is not squarefree but 7^d - 6^d is squarefree for every proper divisor d of 20 (i.e., for d = 1, 2, 4, 5, and 10): 7^1 - 6^1 = 1, 7^2 - 6^2 = 13, 7^4 - 6^4 = 1105, 7^5 - 6^5 = 13682, 7^10 - 6^10 = 222009013 are all squarefree.
		

Crossrefs

Extensions

a(5)-a(7) from Jinyuan Wang, May 15 2020

A250208 Ratio of the primitive part of 2^n-1 to the product of primitive prime factors of 2^n-1.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Eric Chen, Mar 02 2015

Keywords

Comments

As with A178764, it can be shown that all terms are either 1 or prime.
a(2*3^n) = 3 (n>=1).
a(4*5^n) = 5 (n>=1).
a(3*7^n) = 7 (n>=1).
a(10*11^n) = 11 (n>=1).
a(12*13^n) = 13 (n>=1).
a(8*17^n) = 17 (n>=1).
a(18*19^n) = 19 (n>=1).
...
a(A014664(k)*prime(k)^n) = prime(k).
For other n (while Phi_n(2) is squarefree), a(n) = 1.
a(n) != 1 for n = {6, 18, 20, 21, 54, 100, 110, 136, 147, 155, 156, 162, ...}.
At least, a(A049093(n)) = 1. (In fact, since Phi_n(2) is not completely factored for n = 991, 1207, 1213, 1217, 1219, 1229, 1231, 1237, 1243, 1249, ..., so it is unknown whether they are squarefree or not, but it is likely that Phi_n(2) is squarefree for all n except 364 and 1755 (because it is likely 1093 and 3511 are the only two Wieferich primes), so a(991), a(1207), a(1213), ..., are likely to be 1.)

Examples

			a(11) = 1 since Phi_11(2) = (2^11-1)/(2-1) = 2047, and the primitive prime factors of 2^11-1 are 23 and 89, so a(11) = 2047/(23*89) = 1.
a(18) = 3 since Phi_18(2) = 2^6 - 2^3 + 1 = 57, and the only primitive prime factor of 2^18-1 is 19, so a(18) = 57/19 = 3.
		

Crossrefs

Programs

  • Mathematica
    a250208[n_] = If[n == 364, 1093, If[n == 1755, 3511, GCD[Cyclotomic[n, 2], n]]]; Table[a250208[n], {n, 0, 200}]
  • PARI
    a(n) = if (n==364, 1093, if (n==1755, 3511, gcd(polcyclo(n, 2), n)));
    
  • PARI
    isprimitive(p, n) = {for (r=1, n-1, if (((2^r-1) % p) == 0, return (0)); ); return (1); }
    ppf(n) = {my(pf = factor(2^n-1)[,1]); prod(k=1,#pf, if (isprimitive(pf[k], n), pf[k], 1));}
    a(n) = if (issquarefree(m=polcyclo(n,2)), gcd(m, n), m/ppf(n)); \\ Michel Marcus, Mar 06 2015

Formula

a(n) = A019320(n) / A064078(n) while Phi_n(2) is squarefree.
a(n) = GCD(Phi_n(2), n) while Phi_n(2) is squarefree.
Notice: a(364) = 1093, a(1755) = 3511. (See A001220.)

A272334 Square root of the largest square dividing 2^n - 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 5, 7, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 21, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 15, 1, 1, 7, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 21, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 1, 7
Offset: 1

Views

Author

Keywords

Comments

a(n) > 1 if and only if n is in A049094.

Examples

			2^42 - 1 = 3^2 * 7^2 * 43 * 127 * 337 * 5419, so a(42) = 3*7 = 21.
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(i[1]^iquo(i[2], 2), i=ifactors(2^n-1)[2]):
    seq(a(n), n=1..105);  # Alois P. Heinz, Apr 29 2016
  • Mathematica
    a[n_] := Sqrt[(2^n-1)/Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 2]}& /@ FactorInteger[2^n -1])];
    Array[a, 105] (* Jean-François Alcover, Jan 03 2022 *)
  • PARI
    a(n)=core(2^n-1,1)[2]

Formula

a(n) = A000188(A000225(n)). - R. J. Mathar, Apr 28 2016

Extensions

More terms from Antti Karttunen, Sep 23 2018
Previous Showing 11-13 of 13 results.