A361857
Number of integer partitions of n such that the maximum is greater than twice the median.
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 3, 7, 11, 16, 25, 37, 52, 74, 101, 138, 185, 248, 325, 428, 554, 713, 914, 1167, 1476, 1865, 2336, 2922, 3633, 4508, 5562, 6854, 8405, 10284, 12536, 15253, 18489, 22376, 26994, 32507, 39038, 46802, 55963, 66817, 79582, 94643, 112315
Offset: 1
The a(5) = 1 through a(10) = 16 partitions:
(311) (411) (511) (521) (522) (622)
(3111) (4111) (611) (621) (721)
(31111) (4211) (711) (811)
(5111) (5211) (5221)
(32111) (6111) (5311)
(41111) (33111) (6211)
(311111) (42111) (7111)
(51111) (43111)
(321111) (52111)
(411111) (61111)
(3111111) (331111)
(421111)
(511111)
(3211111)
(4111111)
(31111111)
The partition y = (5,2,2,1) has maximum 5 and median 2, and 5 > 2*2, so y is counted under a(10).
For length instead of median we have
A237751.
For minimum instead of median we have
A237820.
The complement is counted by
A361848.
Reversing the inequality gives
A361858.
These partitions have ranks
A361867.
For mean instead of median we have
A361907.
A000975 counts subsets with integer median.
A237754
Number of partitions of n such that 2*(greatest part) > (number of parts).
Original entry on oeis.org
1, 1, 2, 4, 5, 8, 11, 16, 23, 32, 43, 59, 78, 104, 137, 181, 233, 303, 388, 497, 630, 799, 1003, 1262, 1574, 1961, 2430, 3008, 3701, 4551, 5569, 6805, 8284, 10070, 12195, 14753, 17786, 21413, 25709, 30824, 36856, 44014, 52435, 62384, 74062, 87811, 103901
Offset: 1
a(5) = 5 counts these partitions: 5, 41, 32, 311, 221.
-
z = 50; Table[Count[IntegerPartitions[n], p_ /; 2 Max[p] > Length[p]], {n, z}]
-
my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, x^k*prod(j=1, k, (1-x^(2*k+j-2))/(1-x^j)))) \\ Seiichi Manyama, Jan 25 2022
A361854
Number of strict integer partitions of n such that (length) * (maximum) = 2n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 1, 2, 2, 0, 5, 0, 6, 3, 5, 0, 11, 6, 8, 7, 10, 0, 36, 0, 14, 16, 16, 29, 43, 0, 21, 36, 69, 0, 97, 0, 35, 138, 33, 0, 150, 61, 137, 134, 74, 0, 231, 134, 265, 229, 56, 0, 650, 0, 65, 749, 267, 247, 533, 0, 405, 565
Offset: 1
The a(n) strict partitions for selected n (A..E = 10..14):
n=9: n=12: n=14: n=15: n=16: n=18: n=20: n=21: n=22:
--------------------------------------------------------------
621 831 7421 A32 8431 C42 A532 E43 B542
6321 A41 8521 C51 A541 E52 B632
9432 A631 E61 B641
9531 A721 B731
9621 85421 B821
86321
The a(20) = 6 strict partitions are: (10,7,2,1), (10,6,3,1), (10,5,4,1), (10,5,3,2), (8,6,3,2,1), (8,5,4,2,1).
The strict partition y = (8,5,4,2,1) has diagram:
o o o o o o o o
o o o o o . . .
o o o o . . . .
o o . . . . . .
o . . . . . . .
Since the partition and its complement (shown in dots) have the same size, y is counted under a(20).
A008289 counts strict partitions by length.
A102627 counts strict partitions with integer mean, non-strict
A067538.
A116608 counts partitions by number of distinct parts.
Cf.
A111907,
A237755,
A240850,
A326849 A359897,
A360068,
A360071,
A360243,
A361848,
A361851,
A361852,
A361906.
A361861
Number of integer partitions of n where the median is twice the minimum.
Original entry on oeis.org
0, 0, 0, 1, 1, 1, 2, 5, 5, 8, 11, 16, 20, 28, 38, 53, 67, 87, 111, 146, 183, 236, 297, 379, 471, 591, 729, 909, 1116, 1376, 1682, 2065, 2507, 3055, 3699, 4482, 5395, 6501, 7790, 9345, 11153, 13316, 15839, 18844, 22333, 26466, 31266, 36924, 43478, 51177
Offset: 1
The a(4) = 1 through a(11) = 11 partitions:
(31) (221) (321) (421) (62) (621) (442) (542)
(2221) (521) (4221) (721) (821)
(3221) (4311) (5221) (6221)
(3311) (22221) (5311) (6311)
(22211) (32211) (32221) (33221)
(33211) (42221)
(42211) (43211)
(222211) (52211)
(222221)
(322211)
(2222111)
The partition (3,2,2,2,1,1) has median 2 and minimum 1, so is counted under a(11).
The partition (5,4,2) has median 4 and minimum 2, so is counted under a(11).
For maximum instead of median we have
A118096.
For length instead of median we have
A237757, without the coefficient
A006141.
With minimum instead of twice minimum we have
A361860.
Cf.
A027193,
A039900,
A053263,
A067659,
A111907,
A116608,
A237753,
A237755,
A237824,
A361848,
A361853.
A361850
Number of strict integer partitions of n such that the maximum is twice the median.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 2, 1, 3, 3, 4, 2, 5, 4, 7, 8, 10, 6, 11, 11, 15, 16, 21, 18, 25, 23, 28, 32, 40, 40, 51, 51, 58, 60, 73, 75, 93, 97, 113, 123, 139, 141, 164, 175, 199, 217, 248, 263, 301, 320, 356, 383, 426, 450, 511, 551, 613, 664, 737
Offset: 1
The a(7) = 1 through a(20) = 4 strict partitions (A..C = 10..12):
421 . . 631 632 . 841 842 843 A51 A52 A53 A54 C62
5321 6421 7431 7432 8531 8532 C61 9542
7521 64321 8621 9541 9632
65321 9631 85421
9721
The partition (7,4,3,1) has maximum 7 and median 7/2, so is counted under a(15).
The partition (8,6,2,1) has maximum 8 and median 4, so is counted under a(17).
A000975 counts subsets with integer median.
A359907 counts strict partitions with integer median
Cf.
A027193,
A067659,
A079309,
A111907,
A116608,
A359897,
A359908,
A360952,
A361851,
A361858,
A361859,
A361860.
A363132
Number of integer partitions of 2n such that 2*(minimum) = (mean).
Original entry on oeis.org
0, 0, 1, 2, 5, 6, 15, 14, 32, 34, 65, 55, 150, 100, 225, 237, 425, 296, 824, 489, 1267, 1133, 1809, 1254, 4018, 2142, 4499, 4550, 7939, 4564, 14571, 6841, 18285, 16047, 23408, 17495, 52545, 21636, 49943, 51182, 92516, 44582, 144872, 63260, 175318, 169232, 205353
Offset: 0
The a(2) = 1 through a(7) = 14 partitions:
(31) (321) (62) (32221) (93) (3222221)
(411) (3221) (33211) (552) (3322211)
(3311) (42211) (642) (3332111)
(4211) (43111) (732) (4222211)
(5111) (52111) (822) (4322111)
(61111) (322221) (4331111)
(332211) (4421111)
(333111) (5222111)
(422211) (5321111)
(432111) (5411111)
(441111) (6221111)
(522111) (6311111)
(531111) (7211111)
(621111) (8111111)
(711111)
Removing the factor 2 gives
A099777.
Taking maximum instead of mean and including odd indices gives
A118096.
For length instead of mean and including odd indices we have
A237757.
For median instead of mean we have
A361861.
These partitions have ranks
A363133.
For maximum instead of minimum we have
A363218.
For median instead of minimum we have
A363224.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.
-
Table[Length[Select[IntegerPartitions[2n],2*Min@@#==Mean[#]&]],{n,0,15}]
-
from sympy.utilities.iterables import partitions
def A363132(n): return sum(1 for s,p in partitions(n<<1,m=n,size=True) if n==s*min(p,default=0)) if n else 0 # Chai Wah Wu, Sep 21 2023
A363134
Positive integers whose multiset of prime indices satisfies: (length) = 2*(minimum).
Original entry on oeis.org
4, 6, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 81, 82, 86, 94, 106, 118, 122, 134, 135, 142, 146, 158, 166, 178, 189, 194, 202, 206, 214, 218, 225, 226, 254, 262, 274, 278, 297, 298, 302, 314, 315, 326, 334, 346, 351, 358, 362, 375, 382, 386, 394, 398, 422, 441
Offset: 1
The terms together with their prime indices begin:
4: {1,1} 94: {1,15} 214: {1,28}
6: {1,2} 106: {1,16} 218: {1,29}
10: {1,3} 118: {1,17} 225: {2,2,3,3}
14: {1,4} 122: {1,18} 226: {1,30}
22: {1,5} 134: {1,19} 254: {1,31}
26: {1,6} 135: {2,2,2,3} 262: {1,32}
34: {1,7} 142: {1,20} 274: {1,33}
38: {1,8} 146: {1,21} 278: {1,34}
46: {1,9} 158: {1,22} 297: {2,2,2,5}
58: {1,10} 166: {1,23} 298: {1,35}
62: {1,11} 178: {1,24} 302: {1,36}
74: {1,12} 189: {2,2,2,4} 314: {1,37}
81: {2,2,2,2} 194: {1,25} 315: {2,2,3,4}
82: {1,13} 202: {1,26} 326: {1,38}
86: {1,14} 206: {1,27} 334: {1,39}
Partitions of this type are counted by
A237757.
Removing the factor 2 gives
A324522.
A360005 gives twice median of prime indices.
Cf.
A000961,
A006141,
A046660,
A051293,
A106529,
A111907,
A237755,
A237824,
A327482,
A361860,
A361861,
A362050.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Length[prix[#]]==2*Min[prix[#]]&]
A347867
Number of partitions of n such that 3*(greatest part) >= (number of parts).
Original entry on oeis.org
1, 2, 3, 4, 6, 10, 14, 20, 27, 38, 51, 70, 92, 123, 162, 212, 274, 355, 453, 579, 733, 928, 1165, 1463, 1822, 2269, 2808, 3470, 4266, 5241, 6407, 7823, 9514, 11554, 13983, 16900, 20359, 24494, 29386, 35205, 42069, 50206, 59773, 71069, 84322, 99913, 118157, 139556, 164528, 193734
Offset: 1
-
my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, x^k*prod(j=1, k, (1-x^(3*k+j-1))/(1-x^j))))
A347868
Number of partitions of n such that 4*(greatest part) >= (number of parts).
Original entry on oeis.org
1, 2, 3, 5, 6, 10, 14, 21, 29, 40, 53, 73, 96, 129, 168, 221, 284, 369, 471, 603, 763, 966, 1211, 1521, 1892, 2355, 2912, 3600, 4423, 5434, 6639, 8107, 9855, 11968, 14476, 17495, 21067, 25342, 30393, 36406, 43489, 51891, 61761, 73421, 87087, 103172, 121977, 144045, 169780, 199883
Offset: 1
-
my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, x^k*prod(j=1, k, (1-x^(4*k+j-1))/(1-x^j))))
A347869
Number of partitions of n such that 5*(greatest part) >= (number of parts).
Original entry on oeis.org
1, 2, 3, 5, 7, 10, 14, 21, 29, 41, 55, 75, 98, 131, 171, 225, 290, 376, 479, 613, 775, 981, 1231, 1545, 1923, 2393, 2959, 3656, 4492, 5515, 6737, 8223, 9994, 12133, 14676, 17732, 21351, 25679, 30793, 36879, 44049, 52549, 62535, 74329, 88153, 104418, 123437, 145746, 171765, 202193
Offset: 1
-
my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, x^k*prod(j=1, k, (1-x^(5*k+j-1))/(1-x^j))))
Comments