cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A238610 Number of partitions of n^5 into parts that are at most n.

Original entry on oeis.org

1, 1, 17, 5043, 7566280, 33432635477, 331281477244572, 6242342067484101895, 200386212932492140762672, 10133053906998476170548376403, 761287353202857218355451068558296, 81209207250425252838671771562105020103, 11863819168025774694177783984734986151951164
Offset: 0

Views

Author

Alois P. Heinz, Mar 01 2014

Keywords

Crossrefs

Column k=5 of A238016.

Formula

a(n) = [x^(n^5)] Product_{j=1..n} 1/(1-x^j).
a(n) ~ exp(2*n) * n^(3*n-5) / (2*Pi). - Vaclav Kotesovec, May 25 2015

A238611 Number of partitions of n^6 into parts that are at most n.

Original entry on oeis.org

1, 1, 33, 44652, 478968264, 20735819929227, 2561606354507677872, 731267824140098782358035, 418829370245413954052212657987, 435014756168760380909523387186194290, 759593815557626617904440619008375351308296, 2102438285027143559802785522708457578986076133973
Offset: 0

Views

Author

Alois P. Heinz, Mar 01 2014

Keywords

Crossrefs

Column k=6 of A238016.

Formula

a(n) = [x^(n^6)] Product_{j=1..n} 1/(1-x^j).
a(n) ~ exp(2*n) * n^(4*n-6) / (2*Pi). - Vaclav Kotesovec, May 25 2015

A238612 Number of partitions of n^7 into parts that are at most n.

Original entry on oeis.org

1, 1, 65, 399675, 30569959880, 12940003469288602, 19900384510848921094632, 85980297709044488588773397089, 877979540384895591800176962368065072, 18720322073127387624828552135278902045913865, 759424638305250205001161810310150848799911916053194
Offset: 0

Views

Author

Alois P. Heinz, Mar 01 2014

Keywords

Crossrefs

Column k=7 of A238016.

Formula

a(n) = [x^(n^7)] Product_{j=1..n} 1/(1-x^j).
a(n) ~ exp(2*n) * n^(5*n-7) / (2*Pi). - Vaclav Kotesovec, May 25 2015

A238613 Number of partitions of n^8 into parts that are at most n.

Original entry on oeis.org

1, 1, 129, 3590508, 1955134763464, 8085018247233663602, 154721208025657067873668152, 10114611726199237476675435354424104, 1841159754991692001851990839259642586671980, 805821524592736878546553406787954567208757510893718
Offset: 0

Views

Author

Alois P. Heinz, Mar 01 2014

Keywords

Crossrefs

Column k=8 of A238016.

Formula

a(n) = [x^(n^8)] Product_{j=1..n} 1/(1-x^j).
a(n) ~ exp(2*n) * n^(6*n-8) / (2*Pi). - Vaclav Kotesovec, May 25 2015

A238614 Number of partitions of n^9 into parts that are at most n.

Original entry on oeis.org

1, 1, 257, 32294883, 125107148059080, 5052825953808096554227, 1203080775953722005263023646232, 1189959092808570377265545326042454670975, 3861166489120966379893685013624485791901912419888, 34687845413783594101366282545316028561007822069601179170488
Offset: 0

Views

Author

Alois P. Heinz, Mar 01 2014

Keywords

Crossrefs

Column k=9 of A238016.

Formula

a(n) = [x^(n^9)] Product_{j=1..n} 1/(1-x^j).
a(n) ~ exp(2*n) * n^(7*n-9) / (2*Pi). - Vaclav Kotesovec, May 25 2015

A238615 Number of partitions of n^10 into parts that are at most n.

Original entry on oeis.org

1, 1, 513, 290594892, 8006513870533064, 3157977415776418319210477, 9355115500676554620340590943203672, 139997247522791157386395916200494707946968395, 8097446373533819684208223226876398545717123633973546819
Offset: 0

Views

Author

Alois P. Heinz, Mar 01 2014

Keywords

Comments

In general, for m > 3, is "Number of partitions of n^m into parts that are at most n" asymptotic to exp(2*n) * n^((m-2)*n-m) / (2*Pi). - Vaclav Kotesovec, May 25 2015

Crossrefs

Column k=10 of A238016.

Formula

a(n) = [x^(n^10)] Product_{j=1..n} 1/(1-x^j).
a(n) ~ exp(2*n) * n^(8*n-10) / (2*Pi). - Vaclav Kotesovec, May 25 2015

A238630 Number of partitions of 3^n into parts that are at most 3.

Original entry on oeis.org

1, 3, 12, 75, 588, 5043, 44652, 399675, 3590508, 32294883, 290594892, 2615176875, 23536060428, 211822949523, 1906401762732, 17157601515675, 154418370594348, 1389765206208963, 12507886468460172, 112570977053880075, 1013138789998136268, 9118249099522873203
Offset: 0

Views

Author

Alois P. Heinz, Mar 01 2014

Keywords

Examples

			a(2) = 12: 333, 3222, 3321, 22221, 32211, 33111, 222111, 321111, 2211111, 3111111, 21111111, 111111111.
		

Crossrefs

Row n=3 of A238016.

Programs

  • Maple
    gf:= (9*x^3+12*x^2-10*x+1)/((1-x)*(1-3*x)*(1-3^2*x)):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..30);
  • Mathematica
    Round[(3^Range[0, 25] + 3)^2/12] (* Paolo Xausa, Jun 26 2024 *)

Formula

a(n) = [x^(3^n)] Product_{j=1..3} 1/(1-x^j).
G.f.: (9*x^3+12*x^2-10*x+1)/((1-x)*(1-3*x)*(1-3^2*x)).
a(n) = A001399(3^n) = round((3^n+3)^2/12).
a(n) = 3*A051500(n-1) for n>=1. - Hugo Pfoertner, May 04 2024

A238631 Number of partitions of 4^n into parts that are at most 4.

Original entry on oeis.org

1, 5, 64, 2280, 123464, 7566280, 478968264, 30569959880, 1955134763464, 125107148059080, 8006513870533064, 512411390124519880, 32794241006913221064, 2098830017067059278280, 134325098574291643691464, 8596805948466686953550280, 550195574937260409780728264
Offset: 0

Views

Author

Alois P. Heinz, Mar 01 2014

Keywords

Crossrefs

Row n=4 of A238016.

Programs

  • Maple
    gf:= -(2048*x^4+1460*x^3-1067*x^2+80*x-1)/((1-x)*(1-4*x)*(1-4^2*x)*(1-4^3*x)):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..20);

Formula

a(n) = [x^(4^n)] Product_{j=1..4} 1/(1-x^j).
G.f.: -(2048*x^4+1460*x^3-1067*x^2+80*x-1) / ((1-x) *(1-4*x) *(1-4^2*x) *(1-4^3*x)).
a(n) = (128 + 9*2^(3+2*n) + 15*16^n + 64^n)/144 for n > 0. - Stefano Spezia, Oct 08 2022

A238632 Number of partitions of 5^n into parts that are at most 5.

Original entry on oeis.org

1, 7, 377, 106852, 55567352, 33432635477, 20735819929227, 12940003469288602, 8085018247233663602, 5052825953808096554227, 3157977415776418319210477, 1973731034215692844676632352, 1233581290054852867292137569852, 770988230493054044846859764522977
Offset: 0

Views

Author

Alois P. Heinz, Mar 01 2014

Keywords

Crossrefs

Row n=5 of A238016.

Programs

  • Maple
    gf:= (1953125*x^5+4828125*x^4-2015125*x^3+96440*x^2-774*x+1)/mul(1-5^j*x, j=0..4):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..20);

Formula

a(n) = [x^(5^n)] Product_{j=1..5} 1/(1-x^j).
G.f.: (1953125*x^5+4828125*x^4-2015125*x^3+96440*x^2-774*x+1) / Product_{j=0..4} 1-5^j*x.

A238633 Number of partitions of 6^n into parts that are at most 6.

Original entry on oeis.org

1, 11, 2432, 6889527, 44056912182, 331281477244572, 2561606354507677872, 19900384510848921094632, 154721208025657067873668152, 1203080775953722005263023646232, 9355115500676554620340590943203672, 72745325498731282220397926627254957272
Offset: 0

Views

Author

Alois P. Heinz, Mar 01 2014

Keywords

Crossrefs

Row n=6 of A238016.

Programs

  • Maple
    gf:= -(29386561536*x^7 +220531481280*x^6 +188259164496*x^5 -77061923145*x^4 +2575778195*x^3 -12336681*x^2+9320*x-1)/ mul(1-6^j*x, j=0..5):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..20);

Formula

a(n) = [x^(6^n)] Product_{j=1..6} 1/(1-x^j).
G.f.: -(29386561536*x^7 +220531481280*x^6 +188259164496*x^5 -77061923145*x^4 +2575778195*x^3 -12336681*x^2 +9320*x-1) / Product_{j=0..5} 1-6^j*x.
Previous Showing 11-20 of 26 results. Next