A238610
Number of partitions of n^5 into parts that are at most n.
Original entry on oeis.org
1, 1, 17, 5043, 7566280, 33432635477, 331281477244572, 6242342067484101895, 200386212932492140762672, 10133053906998476170548376403, 761287353202857218355451068558296, 81209207250425252838671771562105020103, 11863819168025774694177783984734986151951164
Offset: 0
A238611
Number of partitions of n^6 into parts that are at most n.
Original entry on oeis.org
1, 1, 33, 44652, 478968264, 20735819929227, 2561606354507677872, 731267824140098782358035, 418829370245413954052212657987, 435014756168760380909523387186194290, 759593815557626617904440619008375351308296, 2102438285027143559802785522708457578986076133973
Offset: 0
A238612
Number of partitions of n^7 into parts that are at most n.
Original entry on oeis.org
1, 1, 65, 399675, 30569959880, 12940003469288602, 19900384510848921094632, 85980297709044488588773397089, 877979540384895591800176962368065072, 18720322073127387624828552135278902045913865, 759424638305250205001161810310150848799911916053194
Offset: 0
A238613
Number of partitions of n^8 into parts that are at most n.
Original entry on oeis.org
1, 1, 129, 3590508, 1955134763464, 8085018247233663602, 154721208025657067873668152, 10114611726199237476675435354424104, 1841159754991692001851990839259642586671980, 805821524592736878546553406787954567208757510893718
Offset: 0
A238614
Number of partitions of n^9 into parts that are at most n.
Original entry on oeis.org
1, 1, 257, 32294883, 125107148059080, 5052825953808096554227, 1203080775953722005263023646232, 1189959092808570377265545326042454670975, 3861166489120966379893685013624485791901912419888, 34687845413783594101366282545316028561007822069601179170488
Offset: 0
A238615
Number of partitions of n^10 into parts that are at most n.
Original entry on oeis.org
1, 1, 513, 290594892, 8006513870533064, 3157977415776418319210477, 9355115500676554620340590943203672, 139997247522791157386395916200494707946968395, 8097446373533819684208223226876398545717123633973546819
Offset: 0
A238630
Number of partitions of 3^n into parts that are at most 3.
Original entry on oeis.org
1, 3, 12, 75, 588, 5043, 44652, 399675, 3590508, 32294883, 290594892, 2615176875, 23536060428, 211822949523, 1906401762732, 17157601515675, 154418370594348, 1389765206208963, 12507886468460172, 112570977053880075, 1013138789998136268, 9118249099522873203
Offset: 0
a(2) = 12: 333, 3222, 3321, 22221, 32211, 33111, 222111, 321111, 2211111, 3111111, 21111111, 111111111.
-
gf:= (9*x^3+12*x^2-10*x+1)/((1-x)*(1-3*x)*(1-3^2*x)):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..30);
-
Round[(3^Range[0, 25] + 3)^2/12] (* Paolo Xausa, Jun 26 2024 *)
A238631
Number of partitions of 4^n into parts that are at most 4.
Original entry on oeis.org
1, 5, 64, 2280, 123464, 7566280, 478968264, 30569959880, 1955134763464, 125107148059080, 8006513870533064, 512411390124519880, 32794241006913221064, 2098830017067059278280, 134325098574291643691464, 8596805948466686953550280, 550195574937260409780728264
Offset: 0
-
gf:= -(2048*x^4+1460*x^3-1067*x^2+80*x-1)/((1-x)*(1-4*x)*(1-4^2*x)*(1-4^3*x)):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..20);
A238632
Number of partitions of 5^n into parts that are at most 5.
Original entry on oeis.org
1, 7, 377, 106852, 55567352, 33432635477, 20735819929227, 12940003469288602, 8085018247233663602, 5052825953808096554227, 3157977415776418319210477, 1973731034215692844676632352, 1233581290054852867292137569852, 770988230493054044846859764522977
Offset: 0
-
gf:= (1953125*x^5+4828125*x^4-2015125*x^3+96440*x^2-774*x+1)/mul(1-5^j*x, j=0..4):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..20);
A238633
Number of partitions of 6^n into parts that are at most 6.
Original entry on oeis.org
1, 11, 2432, 6889527, 44056912182, 331281477244572, 2561606354507677872, 19900384510848921094632, 154721208025657067873668152, 1203080775953722005263023646232, 9355115500676554620340590943203672, 72745325498731282220397926627254957272
Offset: 0
-
gf:= -(29386561536*x^7 +220531481280*x^6 +188259164496*x^5 -77061923145*x^4 +2575778195*x^3 -12336681*x^2+9320*x-1)/ mul(1-6^j*x, j=0..5):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..20);
Comments