A240061
Triangle read by rows, n>=1, 1<=k<=n. T(n,k) = number of cells in k-th row = number of cells in the k-th column of the diagram of the symmetric representation of sigma(n) in the first quadrant.
Original entry on oeis.org
1, 1, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 0, 3, 1, 1, 1, 3, 2, 4, 1, 1, 1, 1, 0, 0, 4, 1, 1, 1, 1, 3, 2, 1, 5, 1, 1, 1, 1, 1, 1, 2, 0, 5, 1, 1, 1, 1, 1, 3, 1, 2, 1, 6, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 6, 1, 1, 1, 1, 1, 1, 4, 3, 4, 3, 1, 7, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 7
Offset: 1
Triangle begins:
1;
1, 2;
1, 1, 2;
1, 1, 2, 3;
1, 1, 1, 0, 3;
1, 1, 1, 3, 2, 4;
1, 1, 1, 1, 0, 0, 4;
1, 1, 1, 1, 3, 2, 1, 5;
1, 1, 1, 1, 1, 1, 2, 0, 5;
1, 1, 1, 1, 1, 3, 1, 2, 1, 6;
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 6;
1, 1, 1, 1, 1, 1, 4, 3, 4, 3, 1, 7;
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 7;
...
For n = 9 the symmetric representation of sigma(9) = 13 in the first quadrant looks like this:
y
. Number of cells
._ _ _ _ _
|_ _ _ _ _| 5
. |_ _ 0
. |_ | 2
. |_|_ _ 1
. | | 1
. | | 1
. | | 1
. | | 1
. . . . . . . . |_| . . x 1
.
So the 9th row of triangle is [1, 1, 1, 1, 1, 1, 2, 0, 5].
For n = 9 and k = 7 there are two cells in the 7th row of the diagram, also there are two cells in the 7th column of the diagram, so T(9,7) = 2.
Cf.
A000203,
A008619,
A024916,
A196020,
A236104,
A235791,
A237270,
A237271,
A237591,
A237593,
A239660,
A239931-
A239934,
A240060.
A252922
a(n) = sigma(n-1) + sigma(n-2) + sigma(n-3), with a(1)=0, a(2)=1, a(3)=4.
Original entry on oeis.org
0, 1, 4, 8, 14, 17, 25, 26, 35, 36, 46, 43, 58, 54, 66, 62, 79, 73, 88, 77, 101, 94, 110, 92, 120, 115, 133, 113, 138, 126, 158, 134, 167, 143, 165, 150, 193, 177, 189, 154, 206, 188, 228, 182, 224, 206, 234, 198, 244, 229, 274, 222, 263, 224, 272, 246, 312, 272, 290, 230, 318, 290, 326, 262, 327, 315, 355, 296
Offset: 1
a(5) = sigma(4) + sigma(3) + sigma(2) = 7 + 4 + 3 = 14. On the other hand a(5) = A024916(4) - A024916(1) = 15 - 1 = 14.
...
Also, if written as a rectangular array T(j,k) with four columns the sequence begins:
0, 1, 4, 8;
14, 17, 25, 26;
35, 36, 46, 43;
58, 54, 66, 62;
79, 73, 88, 77;
101, 94, 110, 92;
120, 115, 133, 113;
138, 126, 158, 134;
167, 143, 165, 150;
193, 177, 189, 154;
206, 188, 228, 182;
224, 206, 234, 198;
244, 229, 274, 222;
263, 224, 272, 246;
312, 272, 290, 230;
318, 290, 326, 262;
...
In this case T(2,1) = a(5) = 14.
Cf.
A000203,
A010883,
A024916,
A092403,
A112610,
A193553,
A196020,
A236104,
A237270,
A237271,
A237593,
A239052,
A239053,
A239931-
A239934,
A239660,
A240020,
A244050,
A245092,
A262626.
-
L:= [0,0,0,seq(numtheory:-sigma(n), n=1..100)]:
L[1..101]+L[2..102]+L[3..103]; # Robert Israel, Dec 07 2016
-
a252922[n_] := Block[{f}, f[1] = 0; f[2] = 1; f[3] = 4;
f[x_] := DivisorSigma[1, x - 1] + DivisorSigma[1, x - 2] +
DivisorSigma[1, x - 3]; Table[f[i], {i, n}]]; a252922[68] (* Michael De Vlieger, Dec 27 2014 *)
-
v=concat([0,1,4],vector(100,n,sigma(n)+sigma(n+1)+sigma(n+2))) \\ Derek Orr, Dec 30 2014
A265999
Numbers k such that in the symmetric representation of sigma(k) all parts are of the same size.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 26, 28, 29, 30, 31, 32, 34, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 52, 53, 54, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 71, 72, 73, 74, 76, 78, 79, 80, 82, 83, 84, 86, 88, 89, 90, 92, 94, 96, 97, 100
Offset: 1
9 is not in the sequence because the parts of the symmetric representation of sigma(9) = 13 are [5, 3, 5].
10 is in the sequence because the parts of the symmetric representation of sigma(10) = 18 are [9, 9].
SRS(15) = { 8, 8, 8 } and SRS(5950) = { 4464, 4464, 4464 }. - _Hartmut F. W. Hoft_, Jan 11 2025
Cf.
A000040,
A000079,
A000203,
A000396,
A196020,
A235791,
A236104,
A237270,
A237271,
A237591,
A237593,
A239660,
A239931-
A239934,
A245092,
A262626,
A266000.
A266000
Numbers k such that the symmetric representation of sigma(k) has at least two parts of distinct size.
Original entry on oeis.org
9, 21, 25, 27, 33, 35, 39, 45, 49, 50, 51, 55, 57, 63, 65, 69, 70, 75, 77, 81, 85, 87, 91, 93, 95, 98, 99, 105, 110, 111, 115, 117, 119, 121, 123, 125, 129, 130, 133, 135, 141, 143, 145, 147, 153, 154, 155, 159, 161, 165, 169, 170, 171, 175, 177, 182, 183, 185, 187, 189, 190, 195
Offset: 1
The symmetric representation of sigma(9) = 13 in the first quadrant looks like this:
y
.
._ _ _ _ _ 5
|_ _ _ _ _|
. |_ _ 3
. |_ |
. |_|_ _ 5
. | |
. | |
. | |
. | |
. . . . . . . . |_| . . x
.
There are three parts: 5 + 3 + 5 = 13, so 9 is in the sequence because the structure contains at least two parts of distinct size.
From _Hartmut F. W. Hoft_, Jan 11 2025: (Start)
SRS(a(1)) = SRS(A239663(3)) = SRS(9) = { 5, 3, 5 } is the smallest with 2 parts of distinct sizes.
SRS(a(14)) = SRS(A239663(5)) = SRS(63) = { 32, 12, 16, 12, 32 } is the smallest with 3 parts of distinct sizes.
SRS(a(127)) = SRS(A239663(7)) = SRS(357) = { 179, 61, 29, 38, 29, 61, 179 } is the smallest with 4 parts of distinct sizes. (End)
Cf.
A000203,
A196020,
A235791,
A236104,
A237270,
A237271,
A237591,
A237593,
A239660,
A239931-
A239934,
A245092,
A262626.
A343621
Numbers k such that the largest Dyck path of the symmetric representation of sigma(k) does not touch the largest Dyck path of the symmetric representation of sigma(k+1).
Original entry on oeis.org
1, 3, 5, 7, 11, 15, 17, 19, 23, 27, 29, 31, 35, 39, 41, 47, 53, 55, 59, 63, 65, 71, 79, 83, 87, 89, 95, 99, 103, 107, 111, 119, 125, 127, 131, 139, 143, 149, 155, 159, 161, 167, 175, 179, 191, 195, 197, 199, 203, 207, 209, 215, 219, 223, 227, 233, 239, 251, 255
Offset: 1
Cf.
A000203,
A085493,
A174973,
A196020,
A235791,
A236104,
A237270,
A237271,
A237591,
A237593,
A239931,
A239932,
A239933,
A239934,
A262626,
A343621.
A348854
a(n) is the total length of all line segments in an octant of the symmetric representation of sigma(n).
Original entry on oeis.org
2, 4, 6, 8, 9, 12, 12, 16, 17, 20, 18, 24, 21, 27, 28, 32, 27, 36, 30, 40, 39, 41, 36, 48, 42, 48, 49, 56, 45, 60, 48, 64
Offset: 1
Cf.
A174973,
A235791,
A236104,
A237270,
A237271,
A237591,
A237593,
A238443,
A239660,
A239931-
A239934,
A245092,
A262259,
A279029.
A240060
Triangle read by rows, n>=1, 1<=k<=n. T(n,n-k+1) = number of cells in the k-th row = number of cells in the k-th column of the diagram of the symmetric representation of sigma(n) in the first quadrant.
Original entry on oeis.org
1, 2, 1, 2, 1, 1, 3, 2, 1, 1, 3, 0, 1, 1, 1, 4, 2, 3, 1, 1, 1, 4, 0, 0, 1, 1, 1, 1, 5, 1, 2, 3, 1, 1, 1, 1, 5, 0, 2, 1, 1, 1, 1, 1, 1, 6, 1, 2, 1, 3, 1, 1, 1, 1, 1, 6, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 7, 1, 3, 4, 3, 4, 1, 1, 1, 1, 1, 1, 7, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Triangle begins:
1;
2, 1;
2, 1, 1;
3, 2, 1, 1;
3, 0, 1, 1, 1;
4, 2, 3, 1, 1, 1;
4, 0, 0, 1, 1, 1, 1;
5, 1, 2, 3, 1, 1, 1, 1;
5, 0, 2, 1, 1, 1, 1, 1, 1;
6, 1, 2, 1, 3, 1, 1, 1, 1, 1;
6, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1;
7, 1, 3, 4, 3, 4, 1, 1, 1, 1, 1, 1;
7, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1;
...
For n = 9 the symmetric representation of sigma(9) = 13 in the first quadrant looks like this:
y
. Number of cells
._ _ _ _ _
|_ _ _ _ _| 5
. |_ _ 0
. |_ | 2
. |_|_ _ 1
. | | 1
. | | 1
. | | 1
. | | 1
. . . . . . . . |_| . . x 1
.
So the 9th row of triangle is [5, 0, 2, 1, 1, 1, 1, 1, 1].
For n = 9 and k = 7 there are two cells in the 7th row of the diagram, also there are two cells in the 7th column of the diagram, so T(9,9-7+1) = T(9,3) = 2.
Cf.
A000203,
A008619,
A024916,
A196020,
A236104,
A235791,
A237270,
A237271,
A237591,
A237593,
A239660,
A239931-
A239934,
A240061.
A317308
Primes p such that the largest Dyck path of the symmetric representation of sigma(p) has a central peak.
Original entry on oeis.org
2, 7, 17, 19, 29, 31, 47, 53, 67, 71, 73, 97, 101, 103, 127, 131, 157, 163, 167, 191, 193, 197, 199, 233, 239, 241, 251, 277, 281, 283, 293, 331, 337, 347, 349, 379, 383, 389, 397, 401, 439, 443, 449, 457, 461, 463, 499, 503, 509, 521, 523, 563, 569, 571, 577, 587, 593, 631, 641, 643, 647, 653, 659, 661
Offset: 1
Illustration of initial terms:
--------------------------------------------------------
p sigma(p) Diagram of the symmetry of sigma
--------------------------------------------------------
_ _ _ _
_| | | | | | | |
2 3 |_ _| | | | | | |
| | | | | |
_|_| | | | |
_| | | | |
_ _ _ _| | | | |
7 8 |_ _ _ _| | | | |
| | | |
_ _ _|_| | |
| _ _ _|_|
_| |
_| _ _|
_ _| _|
| |
| _ _|
_ _ _ _ _ _ _ _ _| |
17 18 |_ _ _ _ _ _ _ _ _| |
_ _ _ _ _ _ _ _ _ _|
19 20 |_ _ _ _ _ _ _ _ _ _|
.
For the first four terms of the sequence we can see in the above diagram that the largest Dyck path of the symmetric representation of sigma(p) has a central peak.
Compare with A317309.
Cf.
A000203,
A065091,
A196020,
A236104,
A235791,
A237048,
A237591,
A237593,
A237270,
A239660,
A239929,
A239931,
A239933,
A244050,
A245092,
A262626.
A317309
Primes p such that the largest Dyck path of the symmetric representation of sigma(p) has a central valley.
Original entry on oeis.org
3, 5, 11, 13, 23, 37, 41, 43, 59, 61, 79, 83, 89, 107, 109, 113, 137, 139, 149, 151, 173, 179, 181, 211, 223, 227, 229, 257, 263, 269, 271, 307, 311, 313, 317, 353, 359, 367, 373, 409, 419, 421, 431, 433, 467, 479, 487, 491, 541, 547, 557, 599, 601, 607, 613, 617, 619, 673, 677, 683, 691, 701
Offset: 1
Illustration of initial terms:
-------------------------------------------------
p sigma(p) Diagram of the symmetry of sigma
-------------------------------------------------
_ _ _ _
| | | | | | | |
_ _|_| | | | | | |
3 4 |_ _| _|_| | | | |
_ _ _| | | | |
5 6 |_ _ _| | | | |
_ _|_| | |
_| _ _|_|
_| |
| _|
_ _ _ _ _ _| _ _|
11 12 |_ _ _ _ _ _| |
_ _ _ _ _ _ _|
13 14 |_ _ _ _ _ _ _|
.
For the first four terms of the sequence we can see in the above diagram that the largest Dyck path of the symmetric representation of sigma(p) has a central valley.
Compare with A317308.
Except for the first term 3, primes in
A317304.
Cf.
A000203,
A065091,
A196020,
A236104,
A235791,
A237048,
A237591,
A237593,
A237270,
A239660,
A239929,
A239931,
A239933,
A244050,
A245092,
A262626.
-
from sympy import isprime
for x in range(1,100):
for x in range(2*x**2+2*x-(2*x//2),2*x**2+2*x+(2*x//2)+1):
if isprime(x):
print(x, end=', ') # César Aguilera, Nov 12 2020
A356351
Partial sums of the ziggurat sequence A347186.
Original entry on oeis.org
1, 5, 11, 27, 39, 76, 96, 160, 196, 286, 328, 489, 545, 701, 808, 1064, 1154, 1488, 1598, 2006, 2208, 2550, 2706, 3403, 3610, 4072, 4384, 5169, 5409, 6385, 6657, 7681, 8127, 8883, 9324, 10910, 11290, 12220, 12824, 14560, 15022, 16863, 17369, 19175, 20276, 21608, 22208, 25129, 25849, 27669
Offset: 1
For n = 16 the figure shows the top view of a three-dimensional spiral formed with the first 16 3D-Ziggurats described in A347186. There are four 3D-Ziggurats in every quadrant:
.
_ _ _ _ _ _ _ _
|_|_|_|_|_|_|_|_|_ _ _ _ _ _ _
|_| |_|_|_|_|_|_|_|
_|_| |
|_|_| _ _ _ _ _ _ |_ _
_ _| |_|_|_|_|_|_|_ _ _ _ _ |_
_ _ _|_| _|_| |_|_|_|_|_| |
|_|_|_|_| _|_|_| |_ _ |_ _ _
|_| _ _|_| _ _ _ _ |_|_| |_|
|_| |_|_|_| _|_|_|_|_|_ _ _ |_|_ _ |_|
|_| |_| _|_|_| |_|_|_| |_| |_|
|_| |_| |_|_|_| |_ _ |_| |_|
|_| |_| |_| _ _ |_| |_| |_|
|_| |_| |_| |_|_|_ |_| |_| |_|
_|_| _|_| _|_| _|_| |_| _|_| _|_| _|_| _
|_| |_| |_| |_| |_| |_| |_| |_|
|_| |_| |_| |_|_ _ _|_| |_| |_| |_|
|_| |_| |_| |_|_|_ _|_|_| |_| |_| |_|
|_| |_| |_|_ |_|_|_| _ _|_| |_| |_|
|_| |_| |_ _|_|_|_| |_| |_|
|_| |_|_ _ |_ _ _ _ |_|_| _ _ _|_| |_|
|_| |_ |_|_|_|_|_ _ _ _|_| _|_|_|_|_| |_|
|_|_ _ _ |_ |_|_|_|_|_| _|_|_|_| _ _ _|_|
|_|_ _ | |_|_|_|_| |_|_|_|_|
|_|_|_| |_ _ _ _ _ _ |_|_|_| _|_|
|_|_|_ |_|_|_|_|_|_|_ _ _ _ _ _|_| _|_|_|
|_|_| |_|_|_|_|_|_|_| _ _|_|_|
| |_|_|_|
|_ _ _ _ _ _ _ _ |_|
|_|_|_|_|_|_|_|_|_ _ _ _ _ _ _ _|_|
|_|_|_|_|_|_|_|_|_|
.
The number of square cells in the top view of the n-th 3D-Ziggurat equals A000203(n).
The total number of square cells in the top view of the 3D-Spiral with the first n 3D-Ziggurats equals A024916(n).
In the above figure the total number of square cells equals A024916(16) = 220.
a(16) = 1064 is the total number of cubes in the 3D-Spiral with the first 16 3D-Ziggurats.
Cf.
A000203,
A024916,
A196020,
A235791,
A236104,
A237270,
A237591,
A237593,
A239660,
A239931,
A239932,
A239933,
A239934,
A347186,
A296508,
A299778,
A347186,
A347263,
A347367,
A347529,
A351819.
Comments