cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A279102 Numbers n having three parts in the symmetric representation of sigma(n).

Original entry on oeis.org

9, 15, 25, 35, 45, 49, 50, 70, 77, 91, 98, 110, 121, 130, 135, 143, 154, 169, 170, 182, 187, 190, 209, 221, 225, 238, 242, 247, 266, 286, 289, 299, 315, 322, 323, 338, 350, 361, 374, 391, 405, 418, 437, 442, 484, 493, 494, 506, 527, 529, 550, 551, 572, 578, 589, 598, 638, 646, 650, 667, 675, 676, 682
Offset: 1

Views

Author

Hartmut F. W. Hoft, Dec 06 2016

Keywords

Comments

Let n = 2^m * q with m >= 0 and q odd, let row(n) = floor(sqrt(8*n+1) - 1)/2), and let 1 = d_1 < ... < d_h <= row(n) < d_(h+1) < ... < d_k = q be the k odd divisors of n.
The symmetric representation of sigma(n) consists of 3 parts precisely when there is a unique i, 1 <= i < h, such that 2^(m+1) * d_i < d_(i+1) and d_h <= row(n) < 2^(m+1) * d_h.
This property of the odd divisors of n is equivalent to the n-th row of the irregular triangle of A249223 consisting of a block of positive numbers, followed by a block of zeros, followed in turn by a block of positive numbers, i.e., determining the first part and the left half of the center part of the symmetric representation of sigma(n), resulting in 3 parts.
Let n be the product of two primes p and q satisfying 2 < p < q < 2*p. Then n satisfies the property above so that the odd numbers in A087718 form a subsequence.

Examples

			a(4) = 35 = 5*7 is in the sequence since 1 < 2 < 5 < row(35) = 7 < 10;
a(8) = 70 = 2*5*7 is in the sequence since 1 < 4 < 5 < row(70) = 11 < 20;
140 = 4*5*7 is not in the sequence since 1 < 5 < 7 < 8 < row(140) = 16 < 20;
a(506) = 5950 = 2*25*7*17 is in the sequence since 1*4 < 5 is the only pair of odd divisors 1 < 5 < 7 < 17 < 25 < 35 < 85 < row(5950) = 108 satisfying the property (see A251820).
		

Crossrefs

Column 3 of A240062.

Programs

  • Mathematica
    (* support functions are defined in A237048 and A262045 *)
    segmentsSigma[n_] := Length[Select[SplitBy[a262045[n], #!=0&], First[#]!=0&]]
    a279102[m_, n_] := Select[Range[m, n], segmentsSigma[#]==3&]
    a279102[1, 700] (* sequence data *)
    (* An equivalent, but slower computation is based on A237271 *)
    a279102[m_, n_] := Select[Range[m, n], a237271[#]==3&]
    a279102[1,700] (* sequence data *)

A318843 a(n) is the smallest number k such that the symmetric representation of sigma(k) consists of n parts of width 1.

Original entry on oeis.org

1, 3, 9, 21, 81, 147, 729, 903, 3025, 6875, 59049, 29095, 531441, 171875, 366025, 643885, 43046721, 3511475
Offset: 1

Views

Author

Hartmut F. W. Hoft, Sep 04 2018

Keywords

Comments

The sequence is infinite since, for example, for any n >= 1 the symmetric representation of sigma(3^n) consists of n + 1 parts of width 1. However, it is not increasing since a(11) = 59049 = 3^10 and a(12) = 29095 = 5 * 11 * 23^2. Also a(13) <= 531441 = 3^12.
This sequence is a subsequence of A174905; its subsequences a(n) for odd/even n are subsequences of A241010/A241008, respectively. Some even-indexed elements of this sequence are members of A239663, e.g., a(2), a(4), a(6), a(8) and a(12), but not a(10) = 6875.
The central pair of parts in the symmetric representation of sigma(a(2)), sigma(a(4)) and sigma(a(8)) meets at the diagonal (see A298856).
From Hartmut F. W. Hoft, Oct 04 2021: (Start)
An upper bound to the sequence is a(n) <= 3^(n-1), n >= 1, (see A348171).
For p = 1,2,3,5,7,11,13,17, a(p) = 3^(p-1) and this equality possibly holds for all a(p) with p a prime.
Also, 75 * 10^6 < a(19) <= 3^18, a(20) = 15391255, a(21) = 44289025 and a(n) > 75 * 10^6 for n > 21.
a(13)-a(18) computations based on A348171 rather than A237270.
The symmetric representation of sigma(3^(p-1)), p prime, consists of p parts and its middle part has area 3^((p-1)/2). (End)
a(n) >= A038547(n) with equality for n=1 and primes n since the distinct prime divisors of n can be replaced by primes 3, 5, 7, 11, ... yielding a smaller number k with the same number of odd divisors. However, some parts in the symmetric representation of sigma(k) have width at least 2. - Hartmut F. W. Hoft, Dec 11 2023

Examples

			The smallest number k whose symmetric representation of sigma(k) consists of four parts of width one is a(4) = 21. The parts are 11, 5, 5, 11.
a(4) = 3*7 has width pattern, A341969, 1010101 while A038547(4) = 3*5 has width pattern 1012101. a(6) = 3 * 7^2 = 147 has width pattern 10101010101 while A038547(6) = 3^2 * 5 = 45 has width pattern 10121212101. - _Hartmut F. W. Hoft_, Dec 11 2023
		

Crossrefs

Programs

  • Mathematica
    (* Function path[] is defined in A237270 *)
    segmentsSR[pathN0_, pathN1_] := SplitBy[Map[Min, Drop[Drop[pathN0, 1], -1] - pathN1], #==0&]
    regions[pathN0_ ,pathN1_] := Select[Map[Apply[Plus, #]&, segmentsSR[pathN0, pathN1]], #!=0&]
    width1Q[pathN0_, pathN1_] := SubsetQ[{0, 1}, Union[Flatten[Drop[Drop[pathN0, 1], -1] - pathN1, 1]]]
    (* parameter seq is the list of elements of the sequence in interval 1..m-1 already computed with an entry of 0 representing an element not yet found *)
    a318843[m_, n_, seq_] := Module[{list=Join[seq, Table[0, 10]], path1=path[m-1], path0, k, a, r, w}, For[k=m, k<=n, k++, path0=path[k]; a=regions[path0, path1]; r=Length[a]; w=width1Q[path0, path1]; If[w && list[[r]]==0, list[[r]]=k]; path1=path0]; list]
    a318843[2,60000,{1}] (* data - actually computed in steps *)

Extensions

a(13)-a(18) from Hartmut F. W. Hoft, Oct 04 2021

A320066 Numbers k with the property that the symmetric representation of sigma(k) has five parts.

Original entry on oeis.org

63, 81, 99, 117, 153, 165, 195, 231, 255, 273, 285, 325, 345, 375, 425, 435, 459, 475, 525, 561, 575, 625, 627, 665, 693, 725, 735, 775, 805, 819, 825, 875, 897, 925, 975, 1015, 1025, 1075, 1085, 1150, 1175, 1225, 1250, 1295, 1377, 1395, 1421, 1435, 1450, 1479, 1505, 1519, 1550, 1581, 1617, 1645, 1653, 1665
Offset: 1

Views

Author

Omar E. Pol, Oct 05 2018

Keywords

Comments

Those numbers in this sequence with only parts of width 1 in their symmetric representation of sigma form column 5 in the table of A357581. - Hartmut F. W. Hoft, Oct 04 2022

Examples

			63 is in the sequence because the 63rd row of A237593 is [32, 11, 6, 4, 2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 4, 6, 11, 32], and the 62nd row of the same triangle is [32, 11, 5, 4, 3, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 3, 4, 5, 11, 32], therefore between both symmetric Dyck paths there are five parts: [32, 12, 16, 12, 32].
The sums of these parts is 32 + 12 + 16 + 12 + 32 = 104, equaling the sum of the divisors of 63: 1 + 3 + 7 + 9 + 21 + 63 = 104.
(The diagram of the symmetric representation of sigma(63) = 104 is too large to include.)
		

Crossrefs

Column 5 of A240062.
Cf. A000203, A018267, A237270 (the parts), A237271 (number of parts), A174973 (one part), A239929 (two parts), A279102 (three parts), A280107 (four parts).

Programs

  • Mathematica
    (* function a341969 and support functions are defined in A341969, A341970 and A341971 *)
    partsSRS[n_] := Length[Select[SplitBy[a341969[n], #!=0&], #[[1]]!=0&]]
    a320066[n_] := Select[Range[n], partsSRS[#]==5&]
    a320066[1665] (* Hartmut F. W. Hoft, Oct 04 2022 *)

A357581 Square array read by antidiagonals of numbers whose symmetric representation of sigma consists only of parts that have width 1; column k indicates the number of parts and row n indicates the n-th number in increasing order in each of the columns.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 8, 7, 25, 21, 16, 10, 49, 27, 81, 32, 11, 50, 33, 625, 147, 64, 13, 98, 39, 1250, 171, 729, 128, 14, 121, 51, 2401, 207, 15625, 903, 256, 17, 169, 55, 4802, 243, 31250, 987, 3025, 512, 19, 242, 57, 14641, 261, 117649, 1029, 3249, 6875
Offset: 1

Views

Author

Hartmut F. W. Hoft, Oct 04 2022

Keywords

Comments

This sequence is a permutation of A174905. Numbers in the even numbered columns of the table form A241008 and those in the odd numbered columns form A241010. The first row of the table is A318843.
This sequence is a subsequence of A240062 and each column in this sequence is a subsequence in the respective column of A240062.

Examples

			The upper left hand 11 X 11 section of the table for a(n) <= 2*10^7:
     1   2    3   4      5    6         7     8      9     10        11 ...
  ----------------------------------------------------------------------
     1   3    9  21     81  147       729   903   3025   6875     59049
     2   5   25  27    625  171     15625   987   3249   7203   9765625
     4   7   49  33   1250  207     31250  1029   4761  13203  19531250
     8  10   50  39   2401  243    117649  1113   6561  13527       ...
    16  11   98  51   4802  261    235298  1239   7569  14013       ...
    32  13  121  55  14641  275   1771561  1265   8649  14499       ...
    64  14  169  57  28561  279   3543122  1281  12321  14661       ...
   128  17  242  65  29282  333   4826809  1375  14161  15471       ...
   256  19  289  69  57122  363   7086244  1407  15129  15633       ...
   512  22  338  85  58564  369   9653618  1491  16641  15957       ...
  1024  23  361  87  83521  387  19307236  1533  17689  16119       ...
  ...
Each column k > 1 contains odd and even numbers since, e.g., 5^(k-1) and 2 * 5^(k-1) belong to it.
Column 1: A000079, subsequence of A174973 = A238443, and of column 1 in A240062.
Column 2: A246955, subsequence of A239929; 78 is the smallest number not in A246955.
Column 3: A247687, subsequence of A279102; 15 is the smallest number not in A247687.
  Odd numbers in column 3: A001248(k), k > 1.
Column 4: A264102, subsequence of A280107; 75 is the smallest number not in A264102.
Column 5: subsequence of A320066; 63 = A320066(1) is not in column 5.
  Numbers in column 5 have the form 2^k * p^4 with p > 2 prime and 0 <= k < floor(log_2(p)).
  Odd numbers in column 5: A030514(k), k > 1.
Column 6: subsequence of A320511; 189 is the smallest number not in column 6.
  Smallest even number in column 6 is 5050.
Column 7: Numbers have the form 2^k * p^6 with p > 2 prime and 0 <= k < floor(log_2(p)).
  Odd numbers in column 7: A030516(k), k > 1.
Numbers in the column numbered with the n-th prime p_n have the form: 2^k * p^(p_n - 1) with p > 2 prime and 0 <= k < floor(log_2(p_n)).
		

Crossrefs

Programs

  • Mathematica
    (* function a341969 and support functions are defined in A341969, A341970 and A341971 *)
    width1Table[n_, {r_, c_}] := Module[{k, list=Table[{}, c], wL, wLen, pCount, colLen}, For[k=1, k<=n, k++, wL=a341969[k]; wLen=Length[wL]; pCount=(wLen+1)/2; If[pCount<=c&&Length[list[[pCount]]]=1, j--, vec[[PolygonalNumber[i+j-2]+j]]=arr[[i, j]]]]; vec]
    a357581T[n_, r_] := TableForm[width1Table[n, {r, r}]]
    a357581[120000, 10] (* sequence data - first 10 antidiagonals *)
    a357581T[120000, 10] (* upper left hand 10x10 array *)
    a357581T[20000000, 11] (* 11x11 array - very long computation time *)

A320511 Numbers k with the property that the symmetric representation of sigma(k) has six parts.

Original entry on oeis.org

147, 171, 189, 207, 243, 261, 275, 279, 297, 333, 351, 363, 369, 387, 423, 429, 465, 477, 507, 531, 549, 555, 595, 603, 605, 615, 639, 645, 657, 663, 705, 711, 715, 741, 747, 795, 801, 833, 845, 867, 873, 885, 909, 915, 927, 931, 935, 963, 969, 981, 1005, 1017, 1045, 1065, 1071, 1083, 1095, 1105, 1127
Offset: 1

Views

Author

Omar E. Pol, Oct 14 2018

Keywords

Comments

Those numbers in this sequence with only parts of width 1 in their symmetric representation of sigma form column 6 in the table of A357581. - Hartmut F. W. Hoft, Oct 04 2022

Examples

			147 is in the sequence because the 147th row of A237593 is [74, 25, 13, 8, 5, 4, 4, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 4, 4, 5, 8, 13, 25, 74], and the 146th row of the same triangle is [74, 25, 12, 8, 6, 4, 3, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 4, 6, 8, 12, 25, 74], therefore between both symmetric Dyck paths there are six parts: [74, 26, 14, 14, 26, 74].
Note that the sum of these parts is 74 + 26 + 14 + 14 + 26 + 74 = 228, equaling the sum of the divisors of 147: 1 + 3 + 7 + 21 + 49 + 147 = 228.
(The diagram of the symmetric representation of sigma(147) = 228 is too large to include.)
		

Crossrefs

Column 6 of A240062.
Cf. A237270 (the parts), A237271 (number of parts), A174973 (one part), A239929 (two parts), A279102 (three parts), A280107 (four parts), A320066 (five parts).

Programs

  • Mathematica
    (* function a341969 and support functions are defined in A341969, A341970 and A341971 *)
    partsSRS[n_] := Length[Select[SplitBy[a341969[n], #!=0&], #[[1]]!=0&]]
    a320511[n_] := Select[Range[n], partsSRS[#]==6&]
    a320511[1127] (* Hartmut F. W. Hoft, Oct 04 2022 *)

A244579 Numbers k with the property that the number of parts in the symmetric representation of sigma(k) equals the number of divisors of k.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 33, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 79, 81, 83, 85, 87, 89, 93, 95, 97, 101, 103, 107, 109, 111, 113, 115, 119, 121, 123, 125, 127, 129, 131, 133, 137, 139, 141, 145
Offset: 1

Views

Author

Omar E. Pol, Jul 02 2014

Keywords

Comments

Numbers n such that A243982(n) = 0.
First differs from A151991 at a(25).
Let n = 2^m * q with m >= 0 and q odd. Let c_n denote the count of regions in the symmetric representation of sigma(n), which is determined by the positions of 1's in the n-th row of A237048. The maximum of c_n occurs when odd and even positions of 1's alternate implying that all regions have width 1, denoted by w_n = 1. When m > 0 then sigma_0(n) > sigma_0(q) and c_n = sigma_0(n) is impossible. Therefore, exactly those odd n with w_n = 1 are in this sequence. Furthermore, since the 1's in A237048 represent the odd divisors of n, their odd-even alternation expresses the property 2*f < g for any two adjacent divisors f < g of odd number n; in other words, this sequence is also the complement of A090196 relative to the odd numbers. This last property permits computations of elements in this sequence faster than with function a244579, which is based on Dyck paths. - Hartmut F. W. Hoft, Oct 11 2015
From Hartmut F. W. Hoft, Dec 06 2016: (Start)
Also, integers n such that for any pair a < b of divisors of n the inequality 2*a < b holds (hence n is odd).
Let 1 = d_1 < ... < d_k = n be all (odd) divisors of n. The property 2*d_i < d_(i+1), for 1 <= i < k, is equivalent for the 1's in the n-th row of A249223 to be in positions 1 = d_1 < 2 < d_2 < 2*d_2 < ... < d_i <2*d_i < d_(i+1) < ... where 2*d_i represents the odd divisor e_i with d_i * e_i = n. In other words, the odd divisors are the number of parts in the symmetric representation of sigma(n). The rightmost 1 in the n-th row occurs in an odd (even) position when k is odd (even).
As a consequence this sequence is also the complement of A090196 in the set of odd numbers. (End)

Examples

			9 is in the sequence because the parts of the symmetric representation of sigma(9) are [5, 3, 5] and the divisors of 9 are [1, 3, 9] and in both cases there is the same number of elements: A237271(9) = A000005(9) = 3.
See the link for a diagram of the symmetric representations of sigma for sequence data listed above. The symmetric representations of sigma(a(35)) = sigma(81) = sigma(3^4) consists of 5 regions whose areas are [41, 15, 9, 15, 41] and computed as 41 = (3^4+3^0)/2, 15 = (3^3+3^1)/2, and 9 = 3^2 for the central area. Observe also that the 81st row in triangle A237048 is [ 1 1 1 0 0 1 0 0 1 0 0 0 ] with the 1's in positions 1, 2, 3, 6, and 9. This is the largest count for the symmetric regions of sigma shown in the diagram. - _Hartmut F. W. Hoft_, Oct 11 2015
		

Crossrefs

Programs

  • Mathematica
    (* Function a237270[] is defined in A237270 *)
    a244579[m_, n_] := Select[Range[m,n], Length[a237270[#]] == Length[Divisors[#]]&]
    a244579[1, 150] (* data *)
    (* Hartmut F. W. Hoft, Sep 19 2014 *)
    (* alternative function using the divisor property *)
    divisorPairsQ[n_] := Module[{d=Divisors[n]}, Select[2*Most[d] - Rest[d], # >= 0&] == {}]
    a244579Alt[m_?OddQ, n_] := Select[Range[m, n, 2], divisorPairsQ]
    a244579Alt[1, 145] (* data *)
    (* Hartmut F. W. Hoft, Oct 11 2015 *)

Formula

A237271(a(k)) = A000005(a(k)).

A266094 a(n) is the sum of the divisors of the smallest number k such that the symmetric representation of sigma(k) has n parts.

Original entry on oeis.org

1, 4, 13, 32, 104, 228, 576, 1408, 4104, 9824, 19152, 39816, 82944, 196992, 441294, 881280, 1911168, 4539024
Offset: 1

Views

Author

Omar E. Pol, Dec 21 2015

Keywords

Comments

For more information see A239663 and A239665.

Examples

			Illustration of the symmetric representation of sigma(9):
.
.     _ _ _ _ _ 5
.    |_ _ _ _ _|
.              |_ _ 3
.              |_  |
.                |_|_ _ 5
.                    | |
.                    | |
.                    | |
.                    | |
.                    |_|
.
For n = 3 we have that 9 is the smallest number whose symmetric representation of sigma has three parts: [5, 3, 5], so a(3) = 5 + 3 + 5 = 13, equaling the sum of divisors of 9: sigma(9) = 1 + 3 + 9 = 13.
For n = 7 we have that 357 is the smallest number whose symmetric representation of sigma has seven parts: [179, 61, 29, 38, 29, 61, 179], so a(7) = 179 + 61 + 29 + 38 + 29 + 61 + 179 = 576, equaling the sum of divisors of 357: sigma(357) = 1 + 3 + 7 + 17 + 21 + 51 + 119 + 357 = 576.
		

Crossrefs

Formula

a(n) = A000203(A239663(n)).

Extensions

a(14)-a(18) from Omar E. Pol, Jul 21 2018

A320521 a(n) is the smallest even number k such that the symmetric representation of sigma(k) has n parts.

Original entry on oeis.org

2, 10, 50, 230, 1150, 5050, 22310, 106030, 510050, 2065450, 10236350
Offset: 1

Views

Author

Omar E. Pol, Oct 14 2018

Keywords

Comments

It appears that a(n) = 2 * q where q is odd and that the symmetric representation of sigma(a(n)/2) has the same number of parts as that for a(n). Number a(12) > 15000000. - Hartmut F. W. Hoft, Sep 22 2021

Examples

			a(1) = 2 because the second row of A237593 is [2, 2], and the first row of the same triangle is [1, 1], therefore between both symmetric Dyck paths there is only one part: [3], equaling the sum of the divisors of 2: 1 + 2 = 3. See below:
.
.     _ _ 3
.    |_  |
.      |_|
.
.
a(2) = 10 because the 10th row of A237593 is [6, 2, 1, 1, 1, 1, 2, 6], and the 9th row of the same triangle is [5, 2, 2, 2, 2, 5], therefore between both symmetric Dyck paths there are two parts: [9, 9]. Also there are no even numbers k < 10 whose symmetric representation of sigma(k) has two parts. Note that the sum of these parts is 9 + 9 = 18, equaling the sum of the divisors of 10: 1 + 2 + 5 + 10 = 18. See below:
.
.     _ _ _ _ _ _ 9
.    |_ _ _ _ _  |
.              | |_
.              |_ _|_
.                  | |_ _ 9
.                  |_ _  |
.                      | |
.                      | |
.                      | |
.                      | |
.                      |_|
.
a(3) = 50 because the 50th row of A237593 is [26, 9, 4, 3, 3, 1, 2, 1, 1, 1, 1, 2, 1, 3, 3, 4, 9, 26], and the 49th row of the same triangle is [25, 9, 5, 3, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 3, 5, 9, 25], therefore between both symmetric Dyck paths there are three parts: [39, 15, 39]. Also there are no even numbers k < 50 whose symmetric representation of sigma(k) has three parts. Note that the sum of these parts is 39 + 15 + 39 = 93, equaling the sum of the divisors of 50: 1 + 2 + 5 + 10 + 25 + 50 = 93. (The diagram of the symmetric representation of sigma(50) = 93 is too large to include.)
		

Crossrefs

Row 1 of A320537.
Cf. A237270 (the parts), A237271 (number of parts), A174973 (one part), A239929 (two parts), A279102 (three parts), A280107 (four parts), A320066 (five parts), A320511 (six parts).

Programs

  • Mathematica
    (* support functions are defined in A341969, A341970 & A341971 *)
    a320521[n_, len_] := Module[{list=Table[0, len], i, v}, For[i=2, i<=n, i+=2, v=Count[a341969[i], 0]+1;If[list[[v]]==0, list[[v]]=i]]; list]
    a320521[15000000,11] (* Hartmut F. W. Hoft, Sep 22 2021 *)

Extensions

a(6)-a(11) from Hartmut F. W. Hoft, Sep 22 2021

A320537 Square array read by antidiagonals in which T(n,k) is the n-th even number j with the property that the symmetric representation of sigma(j) has k parts.

Original entry on oeis.org

2, 4, 10, 6, 14, 50, 8, 22, 70, 230, 12, 26, 98, 250, 1150, 16, 34, 110, 290, 1250, 5050, 18, 38, 130, 310, 1450, 5150, 22310, 20, 44, 154, 370, 1550, 5290, 23230, 106030, 24, 46, 170, 406, 1850, 5350, 23690, 106490, 510050, 28, 52, 182, 410, 2030, 5450, 24610, 107410, 513130, 2065450
Offset: 1

Views

Author

Omar E. Pol, Oct 15 2018

Keywords

Comments

This is a permutation of the positive even numbers (A299174).
The union of all odd-indexed columns gives A319796, the even numbers in A071562.
The union of all even-indexed columns gives A319802, the even numbers in A071561.

Examples

			From _Hartmut F. W. Hoft_, Oct 06 2021: (Start)
The 10x10 section of table T(n,k):
(Table with first 20 terms from _Omar E. Pol_)
------------------------------------------------------------------
n\k | 1   2   3    4    5     6     7      8       9       10  ...
------------------------------------------------------------------
  1 | 2   10  50   230  1150  5050  22310  106030  510050  2065450
  2 | 4   14  70   250  1250  5150  23230  106490  513130  2115950
  3 | 6   22  98   290  1450  5290  23690  107410  520150  2126050
  4 | 8   26  110  310  1550  5350  24610  110170  530150  2157850
  5 | 12  34  130  370  1850  5450  25070  112010  530450  2164070
  6 | 16  38  154  406  2030  5650  25250  112930  532450  2168150
  7 | 18  44  170  410  2050  5750  25750  114770  534290  2176550
  8 | 20  46  182  430  2150  6250  25990  115690  537050  2186650
  9 | 24  52  190  434  2170  6350  26450  116150  540350  2216950
  10| 28  58  238  470  2350  6550  26750  117070  544870  2219650
   ... (End)
		

Crossrefs

Programs

  • Mathematica
    (* function a341969 is defined in A341969 *)
    sArray[b_, pMax_] := Module[{list=Table[{}, pMax], i, p}, For[i=2, i<=b, i+=2, p=Length[Select[SplitBy[a341969[i], #!=0&], #[[1]]!=0&]]; If[p<=pMax&&Length[list[[p]]]Hartmut F. W. Hoft, Oct 06 2021 *)

Extensions

Terms a(21) and beyond from Hartmut F. W. Hoft, Oct 06 2021

A365081 Numbers k with the property that the symmetric representation of sigma(k) has four parts and its second part is an octagon of width 1 and one of the vertices of the octagon is also the central vertex of the first valley of the largest Dyck path of the diagram.

Original entry on oeis.org

21, 27, 33, 39, 51, 57, 69, 87, 93, 111, 123, 129, 141, 159, 177, 183, 201, 213, 219, 237, 249, 267, 291, 303, 309, 321, 327, 339, 381
Offset: 1

Views

Author

Omar E. Pol, Aug 20 2023

Keywords

Comments

Also the row numbers of the triangle A364639 where the rows are [0, 0, 1, 0, -1, 1] or where the rows start with [0, 0, 1, 0, -1, 1] and the remaining terms are zeros.
Observation: the first 29 terms coincide with the first 29 terms of A161345 that are >= 21.
Apparently a(n)=A127329(n) for n>2. - R. J. Mathar, Sep 05 2023

Examples

			The symmetric representation of sigma(21) in the first quadrant looks like this:
   _ _ _ _ _ _ _ _ _ _ _
  |_ _ _ _ _ _ _ _ _ _ _|
                        |
                        |
                        |_ _ _
                        |_ _  |_
                            |_ _|_
                                | |_
                                |_  |
                                  | |
                                  |_|_ _ _ _
                                          | |
                                          | |
                                          | |
                                          | |
                                          | |
                                          | |
                                          | |
                                          | |
                                          | |
                                          | |
                                          |_|
.
There are four parts (or polygons) and its second part is an octagon of width 1 and one of the vertices of the octagon is also the central vertex of the first valley of the largest Dyck path of the structure so 21 is in the sequence.
		

Crossrefs

Previous Showing 11-20 of 22 results. Next