cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A240062 Square array read by antidiagonals in which T(n,k) is the n-th number j with the property that the symmetric representation of sigma(j) has k parts, with j >= 1, n >= 1, k >= 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 6, 7, 15, 21, 8, 10, 25, 27, 63, 12, 11, 35, 33, 81, 147, 16, 13, 45, 39, 99, 171, 357, 18, 14, 49, 51, 117, 189, 399, 903, 20, 17, 50, 55, 153, 207, 441, 987, 2499, 24, 19, 70, 57, 165, 243, 483, 1029, 2709, 6069, 28, 22, 77, 65, 195, 261, 513, 1113
Offset: 1

Views

Author

Omar E. Pol, Apr 06 2014

Keywords

Comments

This is a permutation of the positive integers.
All odd primes are in column 2 (together with some even composite numbers) because the symmetric representation of sigma(prime(i)) is [m, m], where m = (1 + prime(i))/2, for i >= 2.
The union of all odd-indexed columns gives A071562, the positive integers that have middle divisors. The union of all even-indexed columns gives A071561, the positive integers without middle divisors. - Omar E. Pol, Oct 01 2018
Each column in the table of A357581 is a subsequence of the respective column in the table of this sequence; however, the first row in the table of A357581 is not a subsequence of the first row in the table of this sequence. - Hartmut F. W. Hoft, Oct 04 2022
Conjecture: T(n,k) is the n-th positive integer with k 2-dense sublists of divisors. - Omar E. Pol, Aug 25 2025

Examples

			Array begins:
   1,  3,  9, 21,  63, 147, 357,  903, 2499, 6069, ...
   2,  5, 15, 27,  81, 171, 399,  987, 2709, 6321, ...
   4,  7, 25, 33,  99, 189, 441, 1029, 2793, 6325, ...
   6, 10, 35, 39, 117, 207, 483, 1113, 2961, 6783, ...
   8, 11, 45, 51, 153, 243, 513, 1197, 3025, 6875, ...
  12, 13, 49, 55, 165, 261, 567, 1239, 3087, 6909, ...
  16, 14, 50, 57, 195, 275, 609, 1265, 3249, 7011, ...
  18, 17, 70, 65, 231, 279, 621, 1281, 3339, 7203, ...
  20, 19, 77, 69, 255, 297, 651, 1375, 3381, 7353, ...
  24, 22, 91, 75, 273, 333, 729, 1407, 3591, 7581, ...
  ...
[Lower right hand triangle of array completed by _Hartmut F. W. Hoft_, Oct 04 2022]
		

Crossrefs

Programs

  • Mathematica
    (* function a341969 and support functions are defined in A341969, A341970 and A341971 *)
    partsSRS[n_] := Length[Select[SplitBy[a341969[n], #!=0&], #[[1]]!=0&]]
    widthTable[n_, {r_, c_}] := Module[{k, list=Table[{}, c], parts}, For[k=1, k<=n, k++, parts=partsSRS[k]; If[parts<=c&&Length[list[[parts]]]=1, j--, vec[[PolygonalNumber[i+j-2]+j]]=arr[[i, j]]]]; vec]
    a240062T[n_, r_] := TableForm[widthTable[n, {r, r}]]
    a240062[6069, 10] (* data *)
    a240062T[7581, 10] (* 10 X 10 array - Hartmut F. W. Hoft, Oct 04 2022 *)

Extensions

a(n) > 128 from Michel Marcus, Apr 08 2014

A280107 Numbers m with the property that the symmetric representation of sigma(m) has four parts.

Original entry on oeis.org

21, 27, 33, 39, 51, 55, 57, 65, 69, 75, 85, 87, 93, 95, 105, 111, 115, 119, 123, 125, 129, 133, 141, 145, 155, 159, 161, 175, 177, 183, 185, 201, 203, 205, 213, 215, 217, 219, 230, 235, 237, 245, 249, 250, 253, 259, 265, 267, 287, 290, 291, 295, 301, 303, 305, 309, 310, 319, 321, 327, 329
Offset: 1

Views

Author

Omar E. Pol, Dec 27 2016

Keywords

Comments

From Hartmut F. W. Hoft, Jan 27 2018: (Start)
Let n = 2^k * t where k >= 0 and t is odd, and let D be the set of divisors of t less than r(n) = floor((sqrt(8*n+1) - 1)/2). The following statements are equivalent:
(1) There is exactly one d in D such that 2^(k+1) * d < e where e in D is the next odd divisor larger than d, and the largest divisor f in D satisfies 2^(k+1) * f <= r(n).
(2) The symmetric representation of sigma(n) consists of four parts.
The property says that the first part of the symmetric representation of n consists of the first 2^(k+1) * d - 1 legs and that the second part starts with leg e and ends with leg 2^(k+1) * f - 1 before or at the middle of the Dyck path (see A237048 and A249223) on the diagonal. Together with their symmetric pair they form the four parts. (End)

Examples

			a(1) = 21 because it is the smallest number n whose symmetric representation of sigma(n) has four parts. Note that the sum of the parts is 11 + 5 + 5 + 11 = 32, equaling the sum of the divisors of 21: aigma(21) = 1 + 3 + 7 + 21 = 32.
From _Hartmut F. W. Hoft_, Jan 27 2018: (Start)
230 = 2*5*23 is the first even number since 2^2 < 5, 2^2 * 5 < 23, and row 230 in A237048 has 20 entries with 1's in positions 1, 4, 5, and 20.
Prime number 3 can be a factor for an even number in this sequence as 12246=2*3*13*157 demonstrates with the four parts 12252, 1020, 1020, and 12252 in the symmetric representation of sigma(12246) defined by 1's in positions 1, 3, 4, 12, 13, 39, 52, 156 in row 12246 of A237048; each of the four parts has maximum width 2 and the two central parts meet on the diagonal at 8492. (End)
		

Crossrefs

Column 4 of A240062.
First differs from A264102 at a(10).
Numbers n such that the symmetric representation of sigma(n) has k parts (k = 1..4): A174973 = A238443, A239929, A279102, this sequence.
Cf. A237270, A237271 (number of parts), A237591, A237593, A239665, A245092, A262626.
Cf. A237048, A249223. - Hartmut F. W. Hoft, Jan 27 2018

Programs

  • Mathematica
    (* Function a237270[] is defined in A237270 *)
    a280107[m_, n_] := Select[Range[m, n], Length[a237270[#]]==4&]
    a280107[1, 329] (* data *)
    (* Implementation of the property in the Comment section *)
    evenPart[n_] := Module[{f=First[FactorInteger[n]]}, If[First[f]!=2, 1, First[f]^Last[f]]]
    fourPartsQ[n_] := Module[{e=evenPart[n], oddPart, r=(Sqrt[8*n + 1] - 1)/2, dL}, oddPart=n/evenPart[n]; dL=Select[Divisors[oddPart], #1, 2*e*Last[dL]<=r && Length[Select[2*e*Most[dL]-Rest[dL], #<0&]]==1, False]];
    Select[Range[329], fourPartsQ] (* data *)
    (* Hartmut F. W. Hoft, Jan 27 2018 *)

A320066 Numbers k with the property that the symmetric representation of sigma(k) has five parts.

Original entry on oeis.org

63, 81, 99, 117, 153, 165, 195, 231, 255, 273, 285, 325, 345, 375, 425, 435, 459, 475, 525, 561, 575, 625, 627, 665, 693, 725, 735, 775, 805, 819, 825, 875, 897, 925, 975, 1015, 1025, 1075, 1085, 1150, 1175, 1225, 1250, 1295, 1377, 1395, 1421, 1435, 1450, 1479, 1505, 1519, 1550, 1581, 1617, 1645, 1653, 1665
Offset: 1

Views

Author

Omar E. Pol, Oct 05 2018

Keywords

Comments

Those numbers in this sequence with only parts of width 1 in their symmetric representation of sigma form column 5 in the table of A357581. - Hartmut F. W. Hoft, Oct 04 2022

Examples

			63 is in the sequence because the 63rd row of A237593 is [32, 11, 6, 4, 2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 4, 6, 11, 32], and the 62nd row of the same triangle is [32, 11, 5, 4, 3, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 3, 4, 5, 11, 32], therefore between both symmetric Dyck paths there are five parts: [32, 12, 16, 12, 32].
The sums of these parts is 32 + 12 + 16 + 12 + 32 = 104, equaling the sum of the divisors of 63: 1 + 3 + 7 + 9 + 21 + 63 = 104.
(The diagram of the symmetric representation of sigma(63) = 104 is too large to include.)
		

Crossrefs

Column 5 of A240062.
Cf. A000203, A018267, A237270 (the parts), A237271 (number of parts), A174973 (one part), A239929 (two parts), A279102 (three parts), A280107 (four parts).

Programs

  • Mathematica
    (* function a341969 and support functions are defined in A341969, A341970 and A341971 *)
    partsSRS[n_] := Length[Select[SplitBy[a341969[n], #!=0&], #[[1]]!=0&]]
    a320066[n_] := Select[Range[n], partsSRS[#]==5&]
    a320066[1665] (* Hartmut F. W. Hoft, Oct 04 2022 *)

A357581 Square array read by antidiagonals of numbers whose symmetric representation of sigma consists only of parts that have width 1; column k indicates the number of parts and row n indicates the n-th number in increasing order in each of the columns.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 8, 7, 25, 21, 16, 10, 49, 27, 81, 32, 11, 50, 33, 625, 147, 64, 13, 98, 39, 1250, 171, 729, 128, 14, 121, 51, 2401, 207, 15625, 903, 256, 17, 169, 55, 4802, 243, 31250, 987, 3025, 512, 19, 242, 57, 14641, 261, 117649, 1029, 3249, 6875
Offset: 1

Views

Author

Hartmut F. W. Hoft, Oct 04 2022

Keywords

Comments

This sequence is a permutation of A174905. Numbers in the even numbered columns of the table form A241008 and those in the odd numbered columns form A241010. The first row of the table is A318843.
This sequence is a subsequence of A240062 and each column in this sequence is a subsequence in the respective column of A240062.

Examples

			The upper left hand 11 X 11 section of the table for a(n) <= 2*10^7:
     1   2    3   4      5    6         7     8      9     10        11 ...
  ----------------------------------------------------------------------
     1   3    9  21     81  147       729   903   3025   6875     59049
     2   5   25  27    625  171     15625   987   3249   7203   9765625
     4   7   49  33   1250  207     31250  1029   4761  13203  19531250
     8  10   50  39   2401  243    117649  1113   6561  13527       ...
    16  11   98  51   4802  261    235298  1239   7569  14013       ...
    32  13  121  55  14641  275   1771561  1265   8649  14499       ...
    64  14  169  57  28561  279   3543122  1281  12321  14661       ...
   128  17  242  65  29282  333   4826809  1375  14161  15471       ...
   256  19  289  69  57122  363   7086244  1407  15129  15633       ...
   512  22  338  85  58564  369   9653618  1491  16641  15957       ...
  1024  23  361  87  83521  387  19307236  1533  17689  16119       ...
  ...
Each column k > 1 contains odd and even numbers since, e.g., 5^(k-1) and 2 * 5^(k-1) belong to it.
Column 1: A000079, subsequence of A174973 = A238443, and of column 1 in A240062.
Column 2: A246955, subsequence of A239929; 78 is the smallest number not in A246955.
Column 3: A247687, subsequence of A279102; 15 is the smallest number not in A247687.
  Odd numbers in column 3: A001248(k), k > 1.
Column 4: A264102, subsequence of A280107; 75 is the smallest number not in A264102.
Column 5: subsequence of A320066; 63 = A320066(1) is not in column 5.
  Numbers in column 5 have the form 2^k * p^4 with p > 2 prime and 0 <= k < floor(log_2(p)).
  Odd numbers in column 5: A030514(k), k > 1.
Column 6: subsequence of A320511; 189 is the smallest number not in column 6.
  Smallest even number in column 6 is 5050.
Column 7: Numbers have the form 2^k * p^6 with p > 2 prime and 0 <= k < floor(log_2(p)).
  Odd numbers in column 7: A030516(k), k > 1.
Numbers in the column numbered with the n-th prime p_n have the form: 2^k * p^(p_n - 1) with p > 2 prime and 0 <= k < floor(log_2(p_n)).
		

Crossrefs

Programs

  • Mathematica
    (* function a341969 and support functions are defined in A341969, A341970 and A341971 *)
    width1Table[n_, {r_, c_}] := Module[{k, list=Table[{}, c], wL, wLen, pCount, colLen}, For[k=1, k<=n, k++, wL=a341969[k]; wLen=Length[wL]; pCount=(wLen+1)/2; If[pCount<=c&&Length[list[[pCount]]]=1, j--, vec[[PolygonalNumber[i+j-2]+j]]=arr[[i, j]]]]; vec]
    a357581T[n_, r_] := TableForm[width1Table[n, {r, r}]]
    a357581[120000, 10] (* sequence data - first 10 antidiagonals *)
    a357581T[120000, 10] (* upper left hand 10x10 array *)
    a357581T[20000000, 11] (* 11x11 array - very long computation time *)

A320511 Numbers k with the property that the symmetric representation of sigma(k) has six parts.

Original entry on oeis.org

147, 171, 189, 207, 243, 261, 275, 279, 297, 333, 351, 363, 369, 387, 423, 429, 465, 477, 507, 531, 549, 555, 595, 603, 605, 615, 639, 645, 657, 663, 705, 711, 715, 741, 747, 795, 801, 833, 845, 867, 873, 885, 909, 915, 927, 931, 935, 963, 969, 981, 1005, 1017, 1045, 1065, 1071, 1083, 1095, 1105, 1127
Offset: 1

Views

Author

Omar E. Pol, Oct 14 2018

Keywords

Comments

Those numbers in this sequence with only parts of width 1 in their symmetric representation of sigma form column 6 in the table of A357581. - Hartmut F. W. Hoft, Oct 04 2022

Examples

			147 is in the sequence because the 147th row of A237593 is [74, 25, 13, 8, 5, 4, 4, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 4, 4, 5, 8, 13, 25, 74], and the 146th row of the same triangle is [74, 25, 12, 8, 6, 4, 3, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 4, 6, 8, 12, 25, 74], therefore between both symmetric Dyck paths there are six parts: [74, 26, 14, 14, 26, 74].
Note that the sum of these parts is 74 + 26 + 14 + 14 + 26 + 74 = 228, equaling the sum of the divisors of 147: 1 + 3 + 7 + 21 + 49 + 147 = 228.
(The diagram of the symmetric representation of sigma(147) = 228 is too large to include.)
		

Crossrefs

Column 6 of A240062.
Cf. A237270 (the parts), A237271 (number of parts), A174973 (one part), A239929 (two parts), A279102 (three parts), A280107 (four parts), A320066 (five parts).

Programs

  • Mathematica
    (* function a341969 and support functions are defined in A341969, A341970 and A341971 *)
    partsSRS[n_] := Length[Select[SplitBy[a341969[n], #!=0&], #[[1]]!=0&]]
    a320511[n_] := Select[Range[n], partsSRS[#]==6&]
    a320511[1127] (* Hartmut F. W. Hoft, Oct 04 2022 *)

A320521 a(n) is the smallest even number k such that the symmetric representation of sigma(k) has n parts.

Original entry on oeis.org

2, 10, 50, 230, 1150, 5050, 22310, 106030, 510050, 2065450, 10236350
Offset: 1

Views

Author

Omar E. Pol, Oct 14 2018

Keywords

Comments

It appears that a(n) = 2 * q where q is odd and that the symmetric representation of sigma(a(n)/2) has the same number of parts as that for a(n). Number a(12) > 15000000. - Hartmut F. W. Hoft, Sep 22 2021

Examples

			a(1) = 2 because the second row of A237593 is [2, 2], and the first row of the same triangle is [1, 1], therefore between both symmetric Dyck paths there is only one part: [3], equaling the sum of the divisors of 2: 1 + 2 = 3. See below:
.
.     _ _ 3
.    |_  |
.      |_|
.
.
a(2) = 10 because the 10th row of A237593 is [6, 2, 1, 1, 1, 1, 2, 6], and the 9th row of the same triangle is [5, 2, 2, 2, 2, 5], therefore between both symmetric Dyck paths there are two parts: [9, 9]. Also there are no even numbers k < 10 whose symmetric representation of sigma(k) has two parts. Note that the sum of these parts is 9 + 9 = 18, equaling the sum of the divisors of 10: 1 + 2 + 5 + 10 = 18. See below:
.
.     _ _ _ _ _ _ 9
.    |_ _ _ _ _  |
.              | |_
.              |_ _|_
.                  | |_ _ 9
.                  |_ _  |
.                      | |
.                      | |
.                      | |
.                      | |
.                      |_|
.
a(3) = 50 because the 50th row of A237593 is [26, 9, 4, 3, 3, 1, 2, 1, 1, 1, 1, 2, 1, 3, 3, 4, 9, 26], and the 49th row of the same triangle is [25, 9, 5, 3, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 3, 5, 9, 25], therefore between both symmetric Dyck paths there are three parts: [39, 15, 39]. Also there are no even numbers k < 50 whose symmetric representation of sigma(k) has three parts. Note that the sum of these parts is 39 + 15 + 39 = 93, equaling the sum of the divisors of 50: 1 + 2 + 5 + 10 + 25 + 50 = 93. (The diagram of the symmetric representation of sigma(50) = 93 is too large to include.)
		

Crossrefs

Row 1 of A320537.
Cf. A237270 (the parts), A237271 (number of parts), A174973 (one part), A239929 (two parts), A279102 (three parts), A280107 (four parts), A320066 (five parts), A320511 (six parts).

Programs

  • Mathematica
    (* support functions are defined in A341969, A341970 & A341971 *)
    a320521[n_, len_] := Module[{list=Table[0, len], i, v}, For[i=2, i<=n, i+=2, v=Count[a341969[i], 0]+1;If[list[[v]]==0, list[[v]]=i]]; list]
    a320521[15000000,11] (* Hartmut F. W. Hoft, Sep 22 2021 *)

Extensions

a(6)-a(11) from Hartmut F. W. Hoft, Sep 22 2021

A338486 Numbers n whose symmetric representation of sigma(n) consists of 3 regions with maximum width 2.

Original entry on oeis.org

15, 35, 45, 70, 77, 91, 110, 130, 135, 143, 154, 170, 182, 187, 190, 209, 221, 225, 238, 247, 266, 286, 299, 322, 323, 350, 374, 391, 405, 418, 437, 442, 493, 494, 506, 527, 550, 551, 572, 589, 598, 638, 646, 650, 667, 682, 703, 713, 748, 754, 782, 806, 814, 836, 850
Offset: 1

Views

Author

Hartmut F. W. Hoft, Oct 30 2020

Keywords

Comments

This sequence is a subsequence of A279102. The definition of the sequence excludes squares of primes, A001248, since the 3 regions of their symmetric representation of sigma have width 1 (first column in the irregular triangle of A247687).
Table of numbers in this sequence arranged by the number of prime factors, counting multiplicities:
2 3 4 5 6 7 ...
------------------------------------------
15 45 135 405 1215 3645
35 70 225 1125 5625 ...
77 110 350 1750 8750 744795
91 130 550 2584 ... ...
143 154 572 2750 85455
187 170 650 3128 ...
209 182 748 3250
221 190 836 3496
247 238 850 3944
299 266 884 4216
... ... ... ...
1035 9585
... ...
The numbers in the first row of the table above are b(k) = 5*3^k, k>=1, (see A005030) so that infinitely many odd numbers occur outside of the first column. The central region of the symmetric representation of sigma(b(k)) contains 2*k-1 separate contiguous sections consisting of sequences of entire legs of width 2, k>=1 (see Lemma 2 in the link).
Conjecture: The combined extent of these sections in sigma(b(k)) is 2*3^(k-1) - 1 = A048473(k-1), k>=1.
Since each number n in the first column and first row has a prime factor of odd exponent a contiguous section of the symmetric representation of sigma(n) centered on the diagonal has width 2. For odd numbers n not in the first row or column in which all prime factors have even powers, such as 225 and 5625 in the second row, a contiguous section of the symmetric representation of sigma(n) centered on the diagonal has width 1 (see Lemma 1 in the link).
For each k>=3 and every prime p such that b(k-1) < 2*p < 4*b(k-2), the odd number p*b(k-1) is in the column of b(k). The two inequalities are equivalent to b(k-1) <= row(p*b(k-1)) < 2*b(k-1) ensuring that the symmetric representation of sigma(p*b(k-1)) consists of 3 regions.
45 is the only odd number in its column (see Lemma 3 in the link).
Since the factors of n = p*q satisfy 2 < p < q < 2*p the first column in the table above is a subsequence of A082663 and of A087718 (see Lemma 4 in the link). Each of the two outer regions consists of a single leg of width 1 and length (1 + p*q)/2. The center region of size p+q consists of two subparts (see A196020 & A280851) of width 1 of sizes 2*p-q and 2*q-p, respectively (see Lemma 5 in the link). The table below arranges the first column in the table above according to the length 2*p-q of their single contiguous extent of width 2 in the center region:
1 3 5 7 9 11 13 15 ...
------------------------------------------------------
15 35 187 247 143 391 2257 323
91 77 493 589 221 1363 3139 437
703 209 943 2479 551 2911 6649 713
1891 299 1537 3397 851 3901 ... 1247
2701 527 4183 8509 1643 6313 1457
... ... ... ... ... ... ....
A129521: p*q satisfies 2*p - q = 1 (excluding A129521(1)=6)
A226755: p*q satisfies 2*p - q = 3 (excluding A226755(1)=9)
Sequences with larger differences 2*p - q are not in OEIS.

Examples

			a(6) = 91 = 7*13 is in the sequence and in the 2-column of the first table since 1 < 2 < 7 < 13 = row(91) representing the 4 odd divisors 1 - 91 - 7 - 13 (see A237048) results in the following pattern for the widths of the legs (see A249223): 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2 for 3 regions with width not exceeding 2. It also is in the 1-column of the second table since it has a single area of width 2 which is 1 unit long.
a(29) = 405 = 5*3^4 is in the sequence and in the 5-column of the first table since 1 < 2 < 3 < 5 < 6 < 9 < 10 < 15 < 18 < 27 = row(405) representing the 10 odd divisors 1 - 405 - 3 - 5 - 135 - 9 - 81 - 15 - 45 - 27 results in the following pattern for the widths of the legs: 1, 0, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2 for 3 regions with width not exceeding 2, and 7 = 2*4 - 1 sections of width 2 in the central region.
a(35) = 506 = 2*11*23 is in the sequence since positions 1 < 4 < 11 < 23 < row(506) = 31 representing the 4 odd divisors 1 - 253 - 11 - 23 results in the following pattern for the widths of the legs: 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2 for 3 regions with width not exceeding 2, with the two outer regions consisting of 3 legs of width 1, and a single area of width 2 in the central region.
		

Crossrefs

Programs

  • Mathematica
    (* Functions path and a237270 are defined in A237270 *)
    maxDiagonalLength[n_] := Max[Map[#[[1]]-#[[2]]&, Transpose[{Drop[Drop[path[n], 1], -1], path[n-1]}]]]
    a338486[m_, n_] := Module[{r, list={}, k}, For[k=m, k<=n, k++, r=a237270[k]; If[Length[r]== 3 && maxDiagonalLength[k]==2,AppendTo[list, k]]]; list]
    a338486[1, 850]

A357775 Numbers k with the property that the symmetric representation of sigma(k) has seven parts.

Original entry on oeis.org

357, 399, 441, 483, 513, 567, 609, 621, 651, 729, 759, 777, 783, 837, 861, 891, 957, 999, 1023, 1053, 1089, 1107, 1131, 1161, 1209, 1221, 1269, 1287, 1323, 1353, 1419, 1431, 1443, 1521, 1551, 1595, 1599, 1677, 1705, 1749, 1815, 1833, 1887, 1947, 1989, 2013, 2035, 2067, 2091, 2145, 2193, 2223, 2255
Offset: 1

Views

Author

Omar E. Pol, Oct 12 2022

Keywords

Examples

			357 is in the sequence because the 357th row of A237593 is [179, 60, 31, 18, 12, 9, 7, 6, 4, 4, 3, 3, 2, 3, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 3, 2, 3, 3, 4, 4, 6, 7, 9, 12, 18, 31, 60, 179], and the 356th row of the same triangle is [179, 60, 30, 18, 13, 9, 6, 6, 4, 4, 3, 3, 3, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 3, 3, 3, 4, 4, 6, 6, 9, 13, 18, 30, 60, 179], therefore between both symmetric Dyck paths there are seven parts: [179, 61, 29, 38, 29, 61, 179].
Note that the sum of these parts is 179 + 61 + 29 + 38 + 29 + 61 + 179 = 576, equaling the sum of the divisors of 357: 1 + 3 + 7 + 17 + 21 + 51 + 119 + 357 = 576.
(The diagram of the symmetric representation of sigma(357) = 576 is too large to include.)
		

Crossrefs

Column 7 of A240062.
Cf. A237270 (the parts), A237271 (number of parts), A238443 = A174973 (one part), A239929 (two parts), A279102 (three parts), A280107 (four parts), A320066 (five parts), A320511 (six parts).

Formula

A237271(a(n)) = 7.

A384704 Triangle T(i, j), 1 <= j <= i, read by rows. T(i, j) is the smallest number k that has i odd divisors and whose symmetric representation of sigma, SRS(k), has j parts; when no such k exists then T(i, j) = -1.

Original entry on oeis.org

1, 6, 3, 18, -1, 9, 30, 78, 15, 21, 162, -1, -1, -1, 81, 90, 666, 45, 75, 63, 147, 1458, -1, -1, -1, -1, -1, 729, 210, 1830, 135, 105, 165, 189, 357, 903, 450, -1, 225, -1, 1225, -1, 441, -1, 3025, 810, 53622, 405, -1, 1377, 1875, 567, 1539, 4779, 6875, 118098, -1, -1, -1, -1, -1, -1, -1, -1, -1, 59049
Offset: 1

Views

Author

Hartmut F. W. Hoft, Jun 07 2025

Keywords

Comments

T(i, j) = -1 for i >= 1 odd, nonprime, j even with 1 < j < i; also for i prime and all j with 1 < j < i.
The single value T(10, 4) = -1 has been verified; see the conjecture below.
T(i, i) <= 3^(i-1) for all i >=1 . Equality holds for all primes i. T(i, i) = A318843(i), for all i >= 1.
A038547(i) is the smallest number with exactly i odd divisors. Thus odd number A038547(i) occurs in row i of triangle T(i, j) so that A038547 is a subsequence of this sequence. For i prime, A038547(i) = T(i, i). For 4 <= i <= 10^9 nonprime, A038547(i) is in the third column, T(i, 3), except for i=8; furthermore, the first part of SRS(A038547(i)) has width 1 and size (A038547(i)+1)/2.
T(i, 1) <= 2 * 3^(i-1) and it is even for all i >1. Equality holds for all primes i.
T(i, 2) <= 2 * 3^(i/2-1) * p for all even i where p is the smallest prime greater than 4 * 3^(i/2-1). Equality holds when i = 2 * h where h is prime.
The positive numbers in columns 1..6 are subsequences of A174973, A239929, A279102, A280107, A320066, A320511, respectively.
Conjectures:
All entries T(i, j) in columns j >= 3 are odd.
T(i, 1)/2 is odd for all i > 1.
T(i, 1) = 2 * T(i, 3) for all nonprime i > 3, for i = 3, but not for i = 8.
T(i, 2)/2 is odd for all even i > 2.
T(i, 3) = A038547(i) for all nonprime i > 3, except i = 8.
T(2*i, 2*j) = -1 for j >= 2 and all prime i satisfying i >= prime(j+1).
From Omar E. Pol, Jun 08 2025: (Start)
T(i,j) is also the smallest number k whose symmetric representation of sigma(k) has i subparts and j parts, or -1 if no such k exists.
Observations:
At least for i < 12 if i is prime then T(i,1) = 2*T(i,i).
At least for i < 12 if i is prime then all terms in row i are -1's except the first and the last term. (End)

Examples

			The first 12 rows of triangle T(i, j):
   i\j      1     2   3   4    5    6    7    8    9   10    11    12
   1:       1
   2:       6     3
   3:      18    -1   9
   4:      30    78  15  21
   5:     162    -1  -1  -1   81
   6:      90   666  45  75   63  147
   7:    1458    -1  -1  -1   -1   -1  729
   8:     210  1830 135 105  165  189  357  903
   9:     450    -1  25  -1 1225   -1  441   -1 3025
  10:     810 53622 405  -1 1377 1875  567 1539 4779 6875
  11:  118098    -1  -1  -1   -1   -1   -1   -1   -1   -1 59049
  12:     630 16290 315 495  525 1071 1287 1197 2499 6069 13915 29095
  ...
		

Crossrefs

Programs

  • Mathematica
    (* function partsSRS[ ] is defined in A377654 *)
    setupT[d_] := Module[{list=Table[0, {i, d}, {j, i}], s, t}, For[s=1, s<=d, s++, For[t=1, t<=s, t++, If[(OddQ[s]&&Not[PrimeQ[s]]&&EvenQ[t]&&1
    				
Showing 1-9 of 9 results.